Classifier.par(stepwiseCM)
Classifier.par()所属R语言包:stepwiseCM
A function to obtain the predicted class labels of the test set using the parallel processing procedure.
一个函数来获取使用并行处理程序的测试集的预测类标签。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Classification has been embedded inside the parallel processing procedure to speed up the computation for large dataset.
分类已嵌入内部的并行处理程序,加快大数据集的计算。
用法----------Usage----------
Classifier.par(train, test = c(), train.label, type = c("TSP", "GLM", "GLM_L1",
"GLM_L2", "PAM", "SVM", "plsrf_x", "plsrf_x_pv", "RF"),
CVtype = c("loocv", "k-fold"), outerkfold = 5, innerkfold = 5,
featurenames = NULL, ncpus = 2)
参数----------Arguments----------
参数:train
A data frame or matrix of containing predictors for the training set, where columns correspond to samples and rows to features.
一个数据框或矩阵的含训练集的预测,其中列对应样品和行的功能。
参数:test
A data frame or matrix containing predictors for the test set (optional), where columns correspond to samples and rows to features.
一个数据框或矩阵包含测试集的预测(可选),其中列对应样品和行的功能。
参数:train.label
A vector of the class labels (0 or 1) of the training set. NOTE: response values should be numerical not factor.
一类标签的训练集(0或1)的向量。注:响应值应该是数值不是因素。
参数:type
Type of classification algorithms. Currently 9 different types of algorithm are available. They are: top scoring pair (TSP), logistic regression (GLM), GLM with L1 (lasso) penalty, GLM with L2 (ridge) penalty, prediction analysis for microarray (PAM), support vector machine (SVM), random forest method after partial least square dimension reduction (plsrf_x), random forest method after partial least square dimension reduction plus prevalidation (plsrf_x_pv), random forest (RF). NOTE: TSP, PAM, plsrf_x and plsrf_x_pv algorithms does not work with clinical data.
类型的分类算法。目前有9种不同的算法。它们分别是:(TSP),得分最高的一对,罗吉斯回归(GLM),L1(套索)的罚款,罚款,L2(脊)芯片的预测分析(PAM),支持向量机(SVM),随机森林法的GLM的GLM后偏最小二乘降维(plsrf_x),随机森林法后,偏最小二乘降维加上prevalidation(plsrf_x_pv),随机森林(RF)。注:TSP,PAM plsrf_x和plsrf_x_pv算法不起作用的临床资料。
参数:CVtype
Cross validation type.
交叉验证类型。
参数:outerkfold
Number of cross validation used in the training phase.
在训练阶段采用交叉验证的数目。
参数:innerkfold
Number of cross validation used to estimate the model parameters.
交叉验证的数量估计模型参数。
参数:featurenames
Feature names in molecular data (e.g. gene or probe names). If given, function also produces name of the selected feature during the training and test phases. Feature selection only works with "TSP", "GLM_L1" and "GLM_L2" algorithms. "RF" provide feature importance.
分子数据的功能名称(如基因或探针的名称)。如果给定的,功能也产生所选功能的名称,在训练和测试阶段。只适用于“TSP问题”,“GLM_L1”和“GLM_L2”算法的特征选择。 “射频”提供功能的重要性。
参数:ncpus
Number of CPUs assign to the parallel computation.
CPU的数量分配给并行计算。
值----------Value----------
A list object Pred which contains following components:
一个List对象强的松,其中包含以下组件:
参数:P.train
A vector of the predicted class labels of the training set.
预测类标签的训练集向量。
参数:P.test
A vector of the predicted class labels of the test set if the test set is given.
如果测试集测试集的预测类标签的向量。
参数:selfeatname_tr
A list object, size of outerkfold, containing the name of the selected features during the training phase if the featurenames is given.
一个List对象,大小的outerkfold,包含在训练阶段,如果featurenames给出所选功能的名称。
参数:selfeatname_te
A list object containing the name of the selected features during the test phase if the test and featurenames are given.
一个列表对象包含在测试阶段所选功能的名称,如果给出的测试和featurenames。
作者(S)----------Author(s)----------
Askar Obulkasim
Maintainer: Askar Obulkasim <askar.wubulikasimu@vumc.nl>
参考文献----------References----------
举例----------Examples----------
data(CNS)
train <- CNS$mrna[, 1:40]
test <- CNS$mrna[, 41:60]
train.label <- CNS$class[1:40]
## Not run: Pred <- Classifier.par(train = train, test = test, train.label = train.label, type = "GLM_L1", [#无法运行:预计值< - Classifier.par(火车=列车,试验测试,train.label = train.label,类型=“GLM_L1”]
CVtype = "k-fold", outerkfold = 5, innerkfold = 5, ncpus = 5)
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|