fit2DWithin(stepNorm)
fit2DWithin()所属R语言包:stepNorm
Bivariate location normalization function for cDNA microarray data
二元位置cDNA微阵列数据的标准化功能
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function performs 2D location normalization on cDNA micoroarray. It operates on class marrayRaw or class marrayNorm. It allows the user to choose from a set of four basic normalization procedures.
该函数对基因micoroarray执行2D位置标准化。它的运作类marrayRaw类marrayNorm。它允许用户从一组四个基本标准化程序选择。
用法----------Usage----------
fit2DWithin(x1.fun = "maSpotRow", x2.fun = "maSpotCol", y.fun = "maM",
subset=TRUE, fun = aov2Dfit, ...)
参数----------Arguments----------
参数:x1.fun
Name of accessor method for spot row coordinates, usually maSpotRow.
现货行存取方法的名称坐标,通常是maSpotRow。
参数:x2.fun
Name of accessor method for spot column coordinates, usually maSpotCol.
存取方法的名称,点列坐标,通常是maSpotCol。
参数:y.fun
Name of accessor method for spot statistics, usually the log-ratio maM.
现货统计的存取方法,通常数比maM的名称。
参数:subset
A "logical" or "numeric" vector indicating the subset of points used to compute the normalization values.
“逻辑”或“数字”向量表示用来计算标准化值点的子集。
参数:fun
Character string specifying the normalization procedures:
字符串指定标准化程序:
rlm2Dfitfor robust linear regression using the rlm function
rlm2Dfitfor强大的线性回归使用rlm函数
loess2Dfitfor robust local regression using the loess function
loess2Dfitfor强大的本地使用loess函数的回归
aov2Dfitfor linear regression using the lm function
aov2Dfitfor使用lm函数的线性回归
spatialMedfitfor spatial median normalization
spatialMedfitfor空间中位数标准化
参数:...
Misc arguments for fun
fun其他参数
Details
详情----------Details----------
The spot statistic named in y is regressed on spot row and column coordinates, using the function specified by the argument fun. Typically, rlm2Dfit and loess2Dfit, which treat row and column coordinates as numeric vectors, require a lot fewer parameters than aov2Dfit which specifies these two variables as categorical. spatialMedfit could yet fit the most complicated model, depending on size of the smoothing window specified; details see Wison et al (2003).
当场统计y名为回归现货行和列坐标,使用参数fun指定的函数。通常情况下,rlm2Dfit和loess2Dfit,把为数字向量的行和列坐标,需要很多少于aov2Dfit指定这两个变量作为分类参数。 spatialMedfit还可以适应最复杂的模型,根据指定的平滑窗口的大小;详细信息,请参见惠生等人(2003)。
值----------Value----------
The function fit2DWithin returns a function (F) with bindings for x1.fun, x2.fun, y.fun, subset and fun. When the function F is evaluated with an object of class marrayNorm or marrayRaw, it carries out normalization and returns an object of class marrayFit that contains the normalization information as a list with the following components:
功能fit2DWithin返回F,x1.fun,x2.fun,y.fun和subset绑定函数(fun)。当函数F类对象被评为marrayNorm或marrayRaw,开展标准化,并返回一个类的对象marrayFit包含列表标准化,信息由以下部分组成:
参数:varfun
: A character vector of names of predictor variables.
:特征向量的预测变量的名称。
参数:x
: A numeric matrix of predictor variables.
:预测变量的数字矩阵。
参数:y
: A numeric matrix of responses.
:数字矩阵的答复。
参数:residuals
: A numeric matrix of normalized values (typically log ratios (M)).
数字矩阵的标准化值(通常log比率(M))。
参数:fitted
: A numeric matrix of the fitted values.
:拟合值的数字矩阵。
参数:enp
: The equivalent number of parameters; see loess.
:等效参数的数目;看到loess
参数:df.residual
: The residual degrees of freedom.
:自由的残留度。
参数:fun
: A character string indicating the name of the function used for normalization.
:一个字符串,指示标准化的函数的名称。
Note that the residuals component stores the normalized ratios.
注意residuals组件存储归一的比率。
作者(S)----------Author(s)----------
Yuanyuan Xiao, <a href="mailto:yxiao@itsa.ucsf.edu">yxiao@itsa.ucsf.edu</a>, <br>
Jean Yee Hwa Yang, <a href="mailto:jean@biostat.ucsf.edu">jean@biostat.ucsf.edu</a>
参考文献----------References----------
for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
(2003). New normalization methods for cDNA microarray data. Bioinformatics, Vol. 19, pp. 1325-1332.
参见----------See Also----------
fitWithin
fitWithin
举例----------Examples----------
## use the swirl data as example[#使用为例漩涡数据]
data(swirl)
## 2D rlm normalization[#2D RLM标准化]
rlm2D <- fit2DWithin(fun="rlm2Dfit")
swirl1.rlm <- rlm2D(swirl[,1])
norm.M <- swirl1.rlm$residuals ## matrix of normalized ratios[#标准化比率的矩阵]
## 2D loess normalization, default span=0.2[#2D黄土标准化,默认跨度= 0.2]
loess2D <- fit2DWithin(fun="loess2Dfit")
swirl1.loess <- loess2D(swirl[,1])
## 2D loess normalization, span=0.4[#2D黄土标准化,跨度= 0.4]
## Not run: [#无法运行:]
loess2D.1 <- fit2DWithin(fun="loess2Dfit", span=0.4)
swirl1.loess.1 <- loess2D.1(swirl[,1])
## End(Not run)[#结束(不运行)]
## 2D aov normalization[#2D AOV标准化]
aov2D <- fit2DWithin(fun="aov2Dfit")
swirl1.aov <- aov2D(swirl[,1])
## 2D spatial median normalization, default window width=3[#二维空间中位数标准化,默认窗口的宽度= 3]
spatialMed2D <- fit2DWithin(fun="spatialMedfit")
swirl1.spatialMed <- spatialMed2D(swirl[,1])
## 2D loess normalization, window width=9[#2D黄土标准化,窗口的宽度= 9]
## Not run: [#无法运行:]
spatialMed2D.1 <- fit2DWithin(fun="spatialMedfit", width=9)
swirl1.spatialMed.1 <- spatialMed2D.1(swirl[,1])
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|