plotcmarrt(Starr)
plotcmarrt()所属R语言包:Starr
Histogram of p-values and normal QQ plots for standardized MA statistics
p值正常的QQ图和标准化专员统计直方图
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Plot the histograms of p-values and normal QQ plots under correlation structure and independence.
p值正常的QQ图,并根据相关结构和独立的绘制直方图。
用法----------Usage----------
plotcmarrt(cmarrt.ma, freq=FALSE)
参数----------Arguments----------
参数:cmarrt.ma
output object from cmarrt.ma.
从cmarrt.ma输出对象。
参数:freq
see ?hist
看到了什么?历史
Details
详情----------Details----------
Diagnostic plots for comparing the distribution of standardized MA statistics under correlation and independence.
根据相关性和独立性分布比较标准化的马统计数字诊断图。
值----------Value----------
Histogram of p-values and normal QQ plots under correlation structure and independence.
p值正常的QQ图,并根据相关结构和独立的直方图。
注意----------Note----------
If the normal quantile-quantile plot deviates from the reference line for unbound probes, this indicates that Gaussian approximation is not suitable for analyzing this data.
如果正常的位数,位数图偏离从绑定探针的参考线,这表明,高斯近似分析这些数据是不适合的。
作者(S)----------Author(s)----------
Pei Fen Kuan, Adam Hinz
参考文献----------References----------
<h3>See Also</h3>
举例----------Examples----------
# dataPath <- system.file("extdata", package="Starr")[< - 。系统数据通路(的“extdata”,包=“斯塔尔”)]
# bpmapChr1 <- readBpmap(file.path(dataPath, "Scerevisiae_tlg_chr1.bpmap"))[bpmapChr1 < - readBpmap(file.path(数据通路,“Scerevisiae_tlg_chr1.bpmap”))]
# cels <- c(file.path(dataPath,"Rpb3_IP_chr1.cel"), file.path(dataPath,"wt_IP_chr1.cel"), [CELS < - C(file.path(数据通路,“Rpb3_IP_chr1.cel”),file.path(数据通路,“wt_IP_chr1.cel”),]
# file.path(dataPath,"Rpb3_IP2_chr1.cel"))[file.path(数据通路,“Rpb3_IP2_chr1.cel”))]
# names <- c("rpb3_1", "wt_1","rpb3_2")[名< - (“rpb3_1”,“wt_1”,“rpb3_2”)]
# type <- c("IP", "CONTROL", "IP")[类型< - C(“知识产权”,“控制”,“知识产权”)]
# rpb3Chr1 <- readCelFile(bpmapChr1, cels, names, type, featureData=TRUE, log.it=TRUE)[rpb3Chr1 < - readCelFile(bpmapChr1,CELS,名称,类型,featureData = TRUE,log.it = TRUE)]
# ips <- rpb3Chr1$type == "IP"[IPS <费用 - rpb3Chr1类型==“知识产权”]
# controls <- rpb3Chr1$type == "CONTROL"[控制<“ - rpb3Chr1 $ ==”控制“]
# rpb3_rankpercentile <- normalize.Probes(rpb3Chr1, method="rankpercentile")[rpb3_rankpercentile < - normalize.Probes(rpb3Chr1,方法=“rankpercentile”)]
# description <- c("Rpb3vsWT")[说明< - Ç(“Rpb3vsWT”)]
# rpb3_rankpercentile_ratio <- getRatio(rpb3_rankpercentile, ips, controls, description, fkt=median, featureData=FALSE)[rpb3_rankpercentile_ratio < - getRatio(rpb3_rankpercentile,IPS,控制,描述,FKT =中位数,featureData = FALSE)]
# probeAnnoChr1 <- bpmapToProbeAnno(bpmapChr1)[probeAnnoChr1 < - bpmapToProbeAnno(bpmapChr1的)]
# peaks <- cmarrt.ma(rpb3_rankpercentile_ratio, probeAnnoChr1, chr=NULL, M=NULL,250,window.opt='fixed.probe')[峰< - cmarrt.ma(rpb3_rankpercentile_ratio,probeAnnoChr1,CHR = NULL,M = NULL,250,window.opt =fixed.probe)]
# plotcmarrt(peaks)[plotcmarrt(峰)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|