找回密码
 注册
查看: 898|回复: 0

R语言 Starr包 cmarrt.ma()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 15:07:40 | 显示全部楼层 |阅读模式
cmarrt.ma(Starr)
cmarrt.ma()所属R语言包:Starr

                                         Compute moving average statistics by incorporating the correlation structure
                                         计算移动平均统计数据纳入相关结构

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function extends the moving average approach by incorporating the correlation structure. It also outputs the p-values of the standardized moving average statistics under the Gaussian approximation.
通过合并相关结构的功能,扩展的移动平均线的方法。它还输出高斯近似下,标准化的移动平均统计的p值。


用法----------Usage----------


cmarrt.ma(eSet, probeAnno, chr=NULL, M=NULL,frag.length,window.opt='fixed.probe')



参数----------Arguments----------

参数:eSet
ExpressionSet containing the normalized ratio
ExpressionSet包含标准化比值


参数:probeAnno
probeAnno object with mapping
probeAnno对象与映射


参数:chr
which chromosome should be analysed? If chr==NULL, all chromosome in the probeAnno object are taken.
应分析的染色体?如果CHR == NULL,所有的染色体在probeAnno对象采取。


参数:M
rough estimate of the percentage of bound probes. If unknown, leave it NULL.
粗略估计,结合探针的百分比。如果不知道,离开它为NULL。


参数:frag.length
average fragment length from sonication.
从超声的平均片段长度。


参数:window.opt
option for sliding window, either "fixed.probe" or "fixed.gen.dist". Default is 'fixed.probe'.
滑动窗口的选项,无论是“fixed.probe”或“fixed.gen.dist”。默认是fixed.probe“。


Details

详情----------Details----------

Computation using window.opt = "fixed.probe" calculates the moving average statistics within a fixed number of probes and is more efficient. Use this option if the tiling array is regular with approximately constant resolution. window.opt="fixed.gen.dist" computes the moving average statistics over a fixed genomic distance.
计算使用window.opt = "fixed.probe"计算移动平均统计,在一个固定的探针数量和更有效。如果平铺阵列是定期与约不断的分辨率,使用此选项。 window.opt="fixed.gen.dist"计算一个固定的基因组距离移动平均统计。


值----------Value----------


参数:data.sort
datafile sorted by genomic position.
通过基因组的位置排序的数据文件。


参数:ma
unstandardized moving average(MA) statistics.
非标准的移动平均线(MA)的统计数据。


参数:z.cmarrt
standardized MA under correlation structure.
根据相关结构标准化的马。


参数:z.indep
standardized MA under independence (ignoring correlation structure).
标准化的马下独立(忽略相关结构)。


参数:pv.cmarrt
p-values of probes under correlation.
P-值下相关的探针。


参数:pv.indep
p-values of probes under independence (ignoring correlation structure).
P-值下独立的探针(忽略相关结构)。


注意----------Note----------

The p-values are obtained under the Gaussian approximation. Therefore, it is important to check the normal quantile-quantile plot if the Gaussian approximation is valid. The function also outputs the computation under independence (ignoring the correlation structure) for comparisons.
高斯近似下,得到的P-值。因此,重要的是检查正常位数位数图,如果是有效的高斯近似。在功能上也下独立进行比较(忽略相关结构)输出计算。


作者(S)----------Author(s)----------


Pei Fen Kuan, Adam Hinz



参考文献----------References----------

<h3>See Also</h3>

举例----------Examples----------


# dataPath &lt;- system.file("extdata", package="Starr")[< - 。系统数据通路(的“extdata”,包=“斯塔尔”)]
# bpmapChr1 &lt;- readBpmap(file.path(dataPath, "Scerevisiae_tlg_chr1.bpmap"))[bpmapChr1 < -  readBpmap(file.path(数据通路,“Scerevisiae_tlg_chr1.bpmap”))]

# cels &lt;- c(file.path(dataPath,"Rpb3_IP_chr1.cel"), file.path(dataPath,"wt_IP_chr1.cel"), [CELS < -  C(file.path(数据通路,“Rpb3_IP_chr1.cel”),file.path(数据通路,“wt_IP_chr1.cel”),]
#         file.path(dataPath,"Rpb3_IP2_chr1.cel"))[file.path(数据通路,“Rpb3_IP2_chr1.cel”))]
# names &lt;- c("rpb3_1", "wt_1","rpb3_2")[名< - (“rpb3_1”,“wt_1”,“rpb3_2”)]
# type &lt;- c("IP", "CONTROL", "IP")[类型< -  C(“知识产权”,“控制”,“知识产权”)]
# rpb3Chr1 &lt;- readCelFile(bpmapChr1, cels, names, type, featureData=TRUE, log.it=TRUE)[rpb3Chr1 < -  readCelFile(bpmapChr1,CELS,名称,类型,featureData = TRUE,log.it = TRUE)]

# ips &lt;- rpb3Chr1$type == "IP"[IPS <费用 -  rpb3Chr1类型==“知识产权”]
# controls &lt;- rpb3Chr1$type == "CONTROL"[控制<“ -  rpb3Chr1 $ ==”控制“]

# rpb3_rankpercentile &lt;- normalize.Probes(rpb3Chr1, method="rankpercentile")[rpb3_rankpercentile < -  normalize.Probes(rpb3Chr1,方法=“rankpercentile”)]
# description &lt;- c("Rpb3vsWT")[说明< - &#199;(“Rpb3vsWT”)]
# rpb3_rankpercentile_ratio &lt;- getRatio(rpb3_rankpercentile, ips, controls, description, fkt=median, featureData=FALSE)[rpb3_rankpercentile_ratio < -  getRatio(rpb3_rankpercentile,IPS,控制,描述,FKT =中位数,featureData = FALSE)]

# probeAnnoChr1 &lt;- bpmapToProbeAnno(bpmapChr1)[probeAnnoChr1 < -  bpmapToProbeAnno(bpmapChr1的)]
# peaks &lt;- cmarrt.ma(rpb3_rankpercentile_ratio, probeAnnoChr1, chr=NULL, M=NULL,250,window.opt='fixed.probe')[峰< -  cmarrt.ma(rpb3_rankpercentile_ratio,probeAnnoChr1,CHR = NULL,M = NULL,250,window.opt =fixed.probe)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-23 10:42 , Processed in 0.038331 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表