snm(snm)
snm()所属R语言包:snm
Perform a supervised normalization of microarray data
执行监督的微阵列数据的标准化
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Implement Supervised Normalization of Microarrays on a gene expression matrix. Requires a set of biological covariates of interest and at least one probe-specific or intensity-dependent adjustment variable.
实施监督规范化的微阵列基因表达矩阵。需要一套生物的兴趣变项,并至少有一个特定的探针或依赖强度调整变量。
用法----------Usage----------
snm(raw.dat, bio.var=NULL, adj.var=NULL, int.var=NULL,
weights=NULL, spline.dim = 4, num.iter = 10, nbins=50,
rm.adj=FALSE, verbose=TRUE, diagnose=TRUE)
参数----------Arguments----------
参数:raw.dat
An m probes by n arrays matrix of expression data. If the user wishes to remove intensity-dependent effects, then we request the matrix corresponds to the raw, log transformed data.
一个m的探针n阵列基因表达数据矩阵。如果用户希望删除依赖强度的影响,那么,我们要求的矩阵对应的原料,记录数据转化。
参数:bio.var
A model matrix (see model.matrix) or data frame with n rows of the biological variables. If NULL, then all probes are treated as "null" in the algorithm.
A型矩阵(model.matrix)或数据框n生物变量的行。如果为NULL,那么所有的探针都被视为“空”的算法。
参数:adj.var
A model matrix (see model.matrix) or data frame with n rows of the probe-specific adjustment variables. If NULL, a model with an intercept term is used.
A型矩阵(model.matrix)或数据框n探针具体调整变量的行。如果为NULL,截距项的模型。
参数:int.var
A data frame with n rows of type factor with the unique levels of intensity-dependent effects. Each column parametrizes a unique source of intensity-dependent effect (e.g., array effects for column 1 and dye effects for column 2).
数据框与n行类型的因素依赖强度影响的独特的水平的。每列parametrizes的强度依赖效应的唯一来源(例如,数组列1和列2染料的影响效果)。
参数:weights
A vector of length m. Values unchanged by algorithm, used to control the influence of each probe on the intensity-dependent array effects.
一个向量的长度m。值算法用于控制每个探针的依赖强度阵列效果的影响,保持不变。
参数:spline.dim
Dimension of basis spline used for array effects.
用于阵列影响的基础样条的尺寸。
参数:num.iter
Number of iterations to run.
运行的迭代数。
参数:nbins
Number of bins used by binning strategy. Array effects are calculated from a nbins x n data matrix, where the (i,j) value is equal to that bin i's average intensity on array j.
分级策略使用的垃圾桶数量。阵列的影响计算从nbinsXn数据矩阵,(i,j)值是平等的,滨i的平均强度阵列j。
参数:rm.adj
If set to FALSE, then only the intensity dependent effects have been removed from the normalized data, implying the effects from the adjustment variables are still present. If TRUE, then the adjustment variables effects and the intensity dependent effects are both removed from the returned normalized data.
如果设置为FALSE,那么唯一的强度依赖效应已经从规范化的数据,这意味着从调整变量的影响仍然存在。如果属实,那么调节变量的影响和强度依赖效应是返回规范化的数据删除。
参数:verbose
A flag telling the software whether or not to display a report after each iteration. TRUE produces the output.
一个标志,告诉软件是否显示每次迭代后的报告。 TRUE产生输出。
参数:diagnose
A flag telling the software whether or not to produce diagnostic output in the form of consecutive plots. TRUE produces the plot.
一个标志,告诉软件是否或不产生诊断输出,在连续图的形式。 TRUE产生图。
Details
详情----------Details----------
This function implements the supervised normalization of microarrays algorithm described in Mecham, Nelson, and Storey (2010).
此功能实现了在Mecham,纳尔逊,层高(2010)所描述的芯片算法的监督标准化。
值----------Value----------
参数:norm.dat
The matrix of normalized data. The default setting is rm.adj=FALSE, which means that only the intensity-dependent effects have been subtracted from the data. If the user wants the adjustment variable effects removed as well, then set rm.adj=TRUE when calling the snm function.
规范化的数据矩阵。默认设置是rm.adj = FALSE,这意味着只依赖强度的影响已经从数据中减去。如果用户想删除以及调节变量的影响,然后设置rm.adj = true时调用snm函数。
参数:pvalues
A vector of p-values testing the association of the biological variables with each probe. These p-values are obtained from an ANOVA comparing models where the full model contains both the probe-specific biological and adjustment variables versus a reduced model that just contains the probe-specific adjustment variables. The data used for this comparison has the intensity-dependent variables removed. These returned p-values are calculated after the final iteration of the algorithm.
测试每个探针的生物变量的关联p值的向量。这些P-值,得到方差分析比较模型,模型包含探针特有的生物和调整变量与降低模型只包含探针具体调整变量。这种比较所使用的数据有依赖强度的变量删除。这些返回的p值计算后的最后一次迭代算法。
参数:pi0
The estimated proportion of true null probes pi_0, calculated after the final iteration of the algorithm.
真正的空探测的估计比例pi_0,计算后的最后一次迭代算法。
参数:iter.pi0s
A vector of length equal to num.iter containing the estimated pi_0 values at each iteration of the snm algorithm. These values should converge and any non-convergence suggests a problem with the data, the assumed model, or both
一个长度等于num.iter包含估计pi_0值snm算法的每次迭代的向量。这些值应该收敛和任何不衔接的建议与数据的问题,假设的模型,或两者
参数:nulls
A vector indexing the probes utilized in estimating the intensity-dependent effects on the final iteration.
一个向量索引利用探针在最后一次迭代的估计依赖强度的影响。
参数:M
A matrix containing the estimated probe intensities for each array utilized in estimating the intensity-dependent effects on the final iteration. For memory parsimony, only a subset of values spanning the range is returned, currently nbins*100 values.
一个矩阵,利用最后一次迭代的依赖强度的影响,估计每个阵列包含估计探针强度。对于内存简约,只覆盖范围的值的子集,则返回,目前nbins * 100的值。
参数:array.fx
A matrix of the final estimated intensity-dependent array effects. For memory parsimony, only a subset of values spanning the range is returned, currently nbins*100 values.
估计最终依赖强度阵列影响的矩阵。对于内存简约,只覆盖范围的值的子集,则返回,目前nbins * 100的值。
参数:bio.var
The processed version of the same input variable.
相同的输入变量的处理版本。
参数:adj.var
The processed version of the same input variable.
相同的输入变量的处理版本。
参数:int.var
The processed version of the same input variable.
相同的输入变量的处理版本。
参数:df0
Degrees of freedom of the adjustment variables.
度调整变量的自由。
参数:df1
Degrees of freedom of the full model matrix, which includes the biological variables and the adjustment variables.
度的自由,其中包括生物变量和调节变量的模型矩阵。
参数:raw.dat
The input data.
输入数据。
参数:rm.var
Same as the input (useful for later analyses).
作为输入(供以后分析用)相同。
参数:call
Function call.
函数调用。
注意----------Note----------
It is necessary for adj.var and adj.var+bio.var to be valid model matrices (e.g., the models cannot be over-determined).
这是必要的adj.var和adj.var + bio.var是有效的模型矩阵(例如,不能超过确定的模型)。
We suggest that the probe level data be analyzed on the log-transformed scale, particularly if the user wishes to remove intensity-dependent effects. It is recommended that the normalized data (and resulting inference) be inspected for latent structure using Surrogate Variable Analysis (Leek and Storey 2007, PLoS Genetics).
我们建议探针级数据分析log转化的规模,特别是如果用户希望删除依赖强度的影响。据建议,规范化的数据(以及由此产生的推理)潜结构,使用替代变量分析(韭菜层2007年,PLoS遗传学)检查。
作者(S)----------Author(s)----------
Brig Mecham <brig.mecham@sagebase.org> and John D. Storey <jstorey@princeton.edu>
参考文献----------References----------
microarrays. Bioinformatics, 26: 1308-1315.
参见----------See Also----------
model.matrix, plot.snm, fitted.snm, summary.snm, sim.singleChannel, sim.doubleChannel, sim.preProcessed, sim.refDesign
model.matrix,plot.snm,fitted.snm,summary.snm,sim.singleChannel,sim.doubleChannel,sim.preProcessed,sim.refDesign
举例----------Examples----------
singleChannel <- sim.singleChannel(12345)
snm.obj <- snm(singleChannel$raw.data,
singleChannel$bio.var,
singleChannel$adj.var,
singleChannel$int.var)
ks.test(snm.obj$pval[singleChannel$true.nulls],"punif")
plot(snm.obj)
summary(snm.obj)
snm.fit = fitted(snm.obj)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|