找回密码
 注册
查看: 1194|回复: 0

R语言 SMAP包 smap()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 14:31:25 | 显示全部楼层 |阅读模式
smap(SMAP)
smap()所属R语言包:SMAP

                                        smap: A Segmental Maximum A Posteriori Approach to Array-CGH Copy
                                         SMAP:段最大后验方法阵列的全息复制

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function fits a Hidden Markov Model (HMM) to a set of observed microarray intensity ratios and outputs the most plausible state sequence in the HMM through segmental a posteriori maximization.
此功能适合隐马尔可夫模型(HMM)的一组观测到的芯片强度的比值,和输出的HMM通过节段性后天的最大化,最合理的状态序列。

Briefly, given an HMM with initial parameter settings lambda and a set of observations O, the method alternates maximization of the joint posterior probability of the state sequence Q and lambda given O, p(Q,lambda|O), over Q (using a modified Viterbi algorithm) and lambda (using a gradient descent scheme with individual learning rate adaptation).
简言之,使用修改后的Viterbi算法的初始参数设置lambda和一套观测Ø方法交替给予Ø状态序列Q和拉姆达的联合后验概率最大化,p(Q,lambda|O)在Q(HMM的)和lambda(使用与个人适应学习率梯度下降计划)。


用法----------Usage----------


smap(x, Obs, sd.min=0.05, mean.sd=0.05,
     max.iters=Inf, gd.max.iters=Inf, tau=0.05,
     eta=0.01, e.change=0.5, e.same=1.2,
     e.min=0.0001, e.max=0.5, adaptive=TRUE,
     overlap=TRUE, distance=TRUE, chrom.wise=FALSE,
     verbose=1, L=5000000)



参数----------Arguments----------

参数:x
An object of class SMAPHMM-class.
对象类SMAPHMM-class。


参数:Obs
An object of class SMAPObservations-class.
对象类SMAPObservations-class。


参数:sd.min
The minimum allowed standard deviation of state associated Gaussian distributions (numeric).
允许的最小状态相关的高斯分布(数字)的标准偏差。


参数:mean.sd
Prior standard deviation of state associated Gaussian means (numeric).
之前国家相关高斯手段(数字)的标准偏差。


参数:max.iters
Maximum number of iterations in the SMAP algorithm (numeric).
在SMAP的算法(数字)的迭代的最大数量。


参数:gd.max.iters
Maximum number of iterations in the gradient descent algorithm per SMAP iteration (numeric).
在每SMAP的迭代梯度下降算法迭代(数字)的最大数量。


参数:tau
Minimum log probability improvement required in the SMAP and gradient descent optimization (numeric).
在SMAP和梯度下降的优化(数字)最低记录概率改善。


参数:eta
Initial learning rate in the gradient descent optimization (numeric).
在初始学习率梯度下降优化(数字)。


参数:e.change
Multiplier for individual learning rate adaptation if the sign of partial derivative changes (numeric). Only used if adaptive == TRUE.
乘数为个人学习速度适应,如果部分(数字)衍生变化的迹象。如果adaptive == TRUE只用。


参数:e.same
Multiplier for individual learning rate adaptation if the sign of partial derivative stays the same (numeric). Only used if adaptive == TRUE.
乘数为个人学习速率自适应偏导数的符号,如果保持不变(数字)。如果adaptive == TRUE只用。


参数:e.min
Minimum allowed learning rate (numeric).
最小允许学习率(数字)。


参数:e.max
Maximum allowed learning rate (numeric).
允许的最大学习率(数字)。


参数:adaptive
If TRUE, individual learning rate adaptation according to Algorithm 1 in Bagos et al. (2004) is used in the gradient descent optimization.  
如果TRUE,个人学习速率适配根据算法在Bagos等。 (2004年),用于在梯度下降的优化。


参数:overlap
If TRUE, genomic overlap of clones is considered in the optimization.
如果TRUE,认为在优化基因的克隆重叠。


参数:distance
If TRUE, genomic distance between clones is considered in the optimization, in terms of distance based transition probabilities.
如果TRUE,克隆基因之间的距离被认为是优化的,基于距离的转移概率。


参数:chrom.wise
If TRUE, the observations are analyzed chromosome-wise rather than genome-wise.
如果TRUE,观测分析,染色体,而不是基因组方面的明智。


参数:verbose
Specifies the amount of output produced; 0 means no information and 3 a lot of information (numeric).
指定的输出量; 0表示没有信息和大量的信息(数字)。


参数:L
A positive length parameter that controls the convergence of distance based transition probabilities towards 1 / noStates(x) (numeric).
一个积极的长度参数控制的距离为基础的转移概率对收敛1 /noStates(x)(数字)。


Details

详情----------Details----------

sd.min, mean.sd, and eta must all be greater than 0.  tau must be greater than 0 if max.iters or gd.max.iters are infinite, and can be 0 otherwise.  If adaptive is TRUE, then e.change is required to be in the interval (0,1], e.same must be greater than or equal to 1, and e.max must be greater than 0.
sd.min,mean.sd,eta都必须大于0。 tau必须大于0,如果max.iters或gd.max.iters是无限的,可以,否则为0。如果adaptive是TRUE,则e.change必须是在区间(0,1],e.same必须大于或等于1,<X >必须大于0。


值----------Value----------

The method returns an object of class SMAPProfile-class or SMAPProfiles-class if chrom.wise is set to FALSE or TRUE, respectively.
该方法返回一个类的对象SMAPProfile-class或SMAPProfiles-class如果chrom.wise设置为FALSE或TRUE,分别。


作者(S)----------Author(s)----------


Robin Andersson <a href="mailto:robin.andersson@lcb.uu.se">robin.andersson@lcb.uu.se</a>



参考文献----------References----------

Sandgren, J., Hvidsten, T. R., Diaz de Stahl, T., Dumanski, J. P., Komorowski, J., A Segmental Maximum A Posteriori Approach to Array-CGH Copy Number Profiling, submitted
Gradient Descent Training of Hidden Markov Models, Using Individual Learning Rate Adaptation. In Paliouras, G., Sakakibara, Y., editors, ICGI, volume 3264 of Lecture Notes in Computer Science, pages 40&ndash;52.

参见----------See Also----------

SMAPHMM, SMAPObservations
SMAPHMM,SMAPObservations


举例----------Examples----------


## Load Glioblastoma multiforme data[#加载多形性胶质母单元瘤数据]
data(GBM)
observations <- SMAPObservations(value=as.numeric(GBM[,2]),
                                 chromosome=as.character(GBM[,3]),
                                 startPosition=as.numeric(GBM[,4]),
                                 endPosition=as.numeric(GBM[,5]),
                                 name="G24460",
                                 reporterId=as.character(GBM[,1]))
plot(observations, ylim=c(0,2))
## Initiate HMM[#启动的HMM]
init.means <- c(0.4, 0.7, 1, 1.3, 1.6, 3)
init.sds <- rep(0.1, 6)
phi <- cbind(init.means, init.sds)
hmm <- SMAPHMM(6, phi, initTrans=0.02)
hmm
## RUN SMAP:[#运行,SMAP:]
profile <- smap(hmm, observations, verbose=2)
## genome profile[#基因组的文件]
plot(profile, ylim=c(0,2))
## chromosome 9 profile[#9号染色体资料]
ids <- which(chromosome(observations) == "9")
plot(profile[ids], ylim=c(0,2), main="chromosome 9")
## output results for chromosome 9[#9号染色体的输出结果]
#cbind(reporterId(observations[ids]), Q(profile[ids]))[cbind(reporterId(观察[IDS]),问(资料[IDS]))]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-24 01:22 , Processed in 0.021247 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表