calcTStatFast(sigPathway)
calcTStatFast()所属R语言包:sigPathway
Compute T-Statistics and Corresponding P-Values
计算t-统计量和相应的P值
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Computes t-statistics and corresponding p-values.
计算t-统计量和相应的p值。
用法----------Usage----------
calcTStatFast(tab, phenotype, ngroups = 2)
参数----------Arguments----------
参数:tab
a numeric matrix of expression values, with the rows and columns representing probe sets and sample arrays, respectively
数字矩阵表达式的值,代表探针台和样品阵列的行和列,分别为
参数:phenotype
a numeric (or character if ngroups >= 2) vector indicating the phenotype
一个数字(或字符,如果ngroups> = 2)向量表示的表型
参数:ngroups
an integer indicating the number of groups in the expression matrix
一个整数,指示组在表达矩阵
Details
详情----------Details----------
If there are two groups in the matrix, it is recommended to use 0 and 1 to denote which sample columns belong to which group. If the phenotype is a character vector, then the phenotype ranked first in the alphabet is considered as 0.
如果有两组矩阵,它是建议用0和1表示样本列属于哪一组。如果表型是特征向量,然后字母表中排名第一的表型被认为是0。
If ngroups = 2, the t-test done here is equivalent to a unpaired two-sample t-test, assuming unequal variances. Please note that as of version 1.1.6, the sign of the t-statistic is positive when the mean of group 1 is greater than the mean of group 0.
如果ngroups= 2,在这里完成的t-检验是相当于1未成的两样本t检验,异方差假设。请注意,版本1.1.6,t-统计的符号为正时,第1组的平均值大于0组的平均。
If there is only one group in the matrix (e.g., Alzheimer's data set as reanalyzed in Tian et al. (2005)), then the phenotype vector should consist of continuous values. In this case, the association between phenotype and expression values is first calculated as Pearson correlation coefficients, transformed to Fisher's z, and then rescaled so that its variance is 1:
如果有矩阵中只有一个组(例如,阿尔茨海默氏症的数据,在田再分析等。(2005年)设置),然后型向量应包括连续值。型和表达值之间的关联,在这种情况下,首先计算Pearson相关系数,转化为费舍尔的z,然后重新调整,因此,它的方差是1:
z = 0.5*log((1+rho)/(1-rho))*sqrt(n-3), where n is the number of phenotypes.
Z = 0.5 *log((1 + RHO)/(1-RHO))* SQRT(N-3),其中n是表型的数量。
If ngroups > 2, the f-statistics (from 1-way ANOVA) are calculated. The user will need to check that the data have similar variances among the groups.
如果ngroups> 2,F-统计(从1路方差)计算。用户将需要检查的数据有类似的差异,各组。
值----------Value----------
参数:pval
A vector of unadjusted p-values
一个未经调整的向量p-值
参数:tstat
A vector of t-statistics (ngroups = 2) or rescaled Fisher's z (ngroups = 1)
t-统计(ngroups= 2)或重新调整的费舍尔的z(ngroups= 1)的向量
参数:rho
(Also returned when ngroups = 1) A vector of Pearson correlation coefficients
(也返回时ngroups= 1)向量的Pearson相关系数
作者(S)----------Author(s)----------
Weil Lai
举例----------Examples----------
## Load inflammatory myopathy data set[#加载炎性肌病数据集。]
data(MuscleExample)
statList <- calcTStatFast(tab, phenotype, ngroups = 2)
## Generate histogram of p-values[#生成p-值的直方图]
hist(statList$pval, xlab = "Unadjusted p-values", ylab = "Frequency")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|