mergeBGMat(ScISI)
mergeBGMat()所属R语言包:ScISI
A function that merges two bipartite graph (BG) incidence
函数合并两个二分图(BG)的发病率
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function takes the union of the row names of mat1 and mat2 for the row names of the aggregate matrix, and takes the union of the complexes of mat1 and mat2. The resulting matrix is also an incidence matrix so an entry of unity impiles protein p is a member of complex C.
此功能需要MAT1和mat2总矩阵的行名行名工会和工会的MAT1与mat2的配合物。矩阵也是一个关联矩阵这样一个统一的入口impiles蛋白p是一个复杂的C。
用法----------Usage----------
mergeBGMat(mat1, mat2, toBeRm)
参数----------Arguments----------
参数:mat1
The first bipartite graph incidence matrix
第一二部图的关联矩阵
参数:mat2
The second bipartite graph incidence matrix
第二二部图的关联矩阵
参数:toBeRm
A character vector of complexes to be removed
复合物的一个特征向量被删除
Details
详情----------Details----------
This function takes two bipartite graph matrices and merges them into one aggregate incidence matrix where informational redundancy is removed.
这个函数需要两个二分图矩阵和他们合并成一个总的发病率矩阵被删除冗余信息。
The rows of the aggregate matrix is indexed by the union of the rownames of mat1 and mat2. It is important that the rownames of mat1 and the rownames of mat2 are from the same name set (e.g. for yeast, only the standard gene names should be used).
总矩阵的行的索引工会的MAT1与mat2的,rownames。这是重要的,MAT1 rownames,和mat2的rownames集(如酵母,应使用标准的基因名称)相同的名称是。
The columns will be indexed by different protein complexes. If two protein complexes are identical, say C-i = K-j, then either C-i or K-j should be listed in toBeRm argument (given as an argument). When the matrices are merged, only one of the two will be kept. The vector toBeRm is generated by calling either runCompareComplex or findSubComp.
不同的蛋白质复合物会被索引的列。如果两种蛋白质复合体是相同的,说CI = KJ,那么无论是词或KJ应toBeRm参数的上市(作为参数给出)。当矩阵合并,只有两个人会被保留。的的向量toBeRm产生通过调用要么runCompareComplex或findSubComp。
值----------Value----------
An aggregate bipartite graph incidence matrix.
聚合的二分图的关联矩阵。
作者(S)----------Author(s)----------
Tony Chiang
举例----------Examples----------
#go = getGOInfo()[去= getGOInfo()]
#mips = getMipsInfo()[MIPS = getMipsInfo()]
#goM = createGOMatrix(go)[GOM = createGOMatrix(去)]
#mipsM = createMipsMatrix(mips)[mipsM = createMipsMatrix(MIPS)]
#cc = runCompareComplex(mipsM, goM, byWhich = "ROW")[CC = runCompareComplex(mipsM,GOM,byWhich =“列”)]
#merged = mergeBGMat(mipsM, goM, cc$toBeRm)[合并,= mergeBGMat(mipsM,GOM,CC美元toBeRm)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|