找回密码
 注册
查看: 590|回复: 0

R语言 ScISI包 findSubComp()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 13:54:58 | 显示全部楼层 |阅读模式
findSubComp(ScISI)
findSubComp()所属R语言包:ScISI

                                        A function that looks for either equality between two complexes
                                         两种配合物之间的平等,要么看起来函数

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function determines if either a complex C-i of bg1 is equal to some complex K-j of bg2 or if a complex C-i (or K-j) is a subcomplex to K-j (or C-i).
此功能决定,如果一个词BG1复杂等于一些BG2复杂的KJ,或一个复杂的词(或KJ)如果是subcomplex KJ(或CI)。


用法----------Usage----------


findSubComp(bg1, bg2, interSectMat, simMat)



参数----------Arguments----------

参数:bg1
The first bipartite graph matrix
第一个二分图矩阵


参数:bg2
The second bipartite graph matrix; bg2 may be equal to bg1
第二次的二分图矩阵; BG2可能等于BG1


参数:interSectMat
A matrix whose rows and columns are indexed by protein complexes: the rows are indexed by complexes of bg1 (colnames of bg1) and the columns indexed by complexes of bg2 (colnames of bg2). The (i,j) entries is the cardinality of the intersection between the i-th complex of bg1 and the j-th complex of bg2.
一个矩阵的行和列索引是由蛋白质复合物:行索引复合物BG1(的BG1 colnames)和列索引BG2(BG2 colnames的)配合物。 (I,J)项之间的BG1的第i个复杂和复杂的BG2的第j个路口的基数。


参数:simMat
A matrix of similarity measures (e.g. Jaccard Index) between two bipartite graphs where the rows are indexed by complexes of the first bipartite graph, bg1, and the columns are indexed by the complexes of the second bipartite graph, bg2. The (i,j) entry of this matrix would be the similarity between C-i of bg1 and K-j of bg2.
一个两行是索引的第一个二分图,BG1,列配合物的二分图矩阵的相似性措施(如Jaccard指数)索引的第二个二分图,BG2的复合物。这个矩阵(I,J)项,将词的BG1,BG2和KJ之间的相似性。


Details

详情----------Details----------

This function uses interSectMat and simMat to determine which complexes C-i of bg1 is equal to which complexes K-j of bg2. When the function finds an equality, C-i = K-j, it produces 5 statistics:
此功能使用interSectMat和simMat,以确定该配合物是CI的BG1等于配合BG2 KJ。当函数找到一个平等,CI = KJ,它产生的5个统计:

1. The name of C-i 2. The name of K-j 3. The cardinality of C-i 4. The cardinality of K-j 5. The cardinality of (C-i intersect K-j)
1。 C-I 2名。对K-J 3名。 C-I 4基数。基数的K-J 5。基数(C-I相交ķ-J)

When all the equality of complexes have been found, this function also uses interSectMat and simMat to find which complexes C-i (or K-j) completely contain complexes K-n (or C-m respectively), i.e. which complexes are subcomplexes. It also returns the 5 statistics listed above.
当所有的配合物的平等已被发现,这个功能也使用interSectMat和simMat,找到络合物词(或KJ)完全包含络合物KN(或厘米),即该复合物是subcomplexes。它还返回上面列出的统计数字。

NB - from the 5 statistics above, it will be clear if the relationship between the complexes is that of equality or sub-ordination.
注 - 从上述5个统计,这将是明确的,如果配合物之间的关系是平等或子协调。


值----------Value----------


参数:record1
A list of lists. The value of each sublist is: 1. a complex of bg1, 2. a complex of bg2, 3. the cardinality of the complex of bg1, 4. the cardinality of the complex of bg2, 5. the cardinality of these two complexes mutual intersection.
一个列表。每个子表的值是:1。 BG1复杂的,2。 BG2复杂的,3。的BG1复杂的基数,4。复杂的BG2,5基数。这两种复合物的相互交集的基数。


参数:record3
A list of lists. The value of each sublist is: 1. a complex of bg1, 2. a complex of bg2, 3. the cardinality of the complex of bg1, 4. the cardinality of the complex of bg2, 5. the cardinality of these two complexes mutual intersection.
一个列表。每个子表的值是:1。 BG1复杂的,2。 BG2复杂的,3。的BG1复杂的基数,4。复杂的BG2,5基数。这两种复合物的相互交集的基数。


参数:toBeRm1
A character vector of the names of complexes in bg1 that equal some complex in bg2. These complexes should be deleted to avoid redundancy if these two bipartite graphs are merged.
BG1的配合物的名称,平等BG2在一些复杂的一个特征向量。这些复合物,应予以删除,以避免冗余,如果这两个二分图的合并。


参数:toBeRm2
A character vector of the names of complexes from either bg1 or bg2 which are sub-complexes of another protein complex.  
BG1或BG2这是另一种蛋白质复合体的子复合物复合物的名称的一个特征向量。


作者(S)----------Author(s)----------


Tony Chiang



举例----------Examples----------


#go = getGOInfo()[去= getGOInfo()]
#mips = getMipsInfo()[MIPS = getMipsInfo()]
#goM = createGOMatrix(go)[GOM = createGOMatrix(去)]
#mipsM = createMipsMatrix(mips)[mipsM = createMipsMatrix(MIPS)]
#cc = runCompareComplex(mipsM, goM, byWhich = "ROW")[CC = runCompareComplex(mipsM,GOM,byWhich =“列”)]


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-24 13:14 , Processed in 0.022026 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表