找回密码
 注册
查看: 588|回复: 0

R语言 RTopper包 runBatchGSE()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 13:36:14 | 显示全部楼层 |阅读模式
runBatchGSE(RTopper)
runBatchGSE()所属R语言包:RTopper

                                         To perform GSE analysis over multipple experiments and functional themes
                                         执行GSE对multipple实验和功能性的主题分析

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The  runBatchGSE  function enables performing Gene Set Enrichment analysis over multiple ranking statistics and multiple lists of gene sets. By default this function is an interface to the geneSetTest in the limma package, and most of the arguments passed to runBatchGSE are indeed passed to such lower level function. As an alternative the user can also define and pass to runBatchGSE a custom function, defining the ranking statistics and the gene set membership in the same way done for geneSetTest (see Details below).
runBatchGSE函数可以执行多个排名统计和多个基因组名单基因组富集分析。默认情况下此功能是geneSetTestlimma包,大部分传递runBatchGSE确实传递等较低层次的功能参数的接口。作为一种替代方法,用户还可以定义和传递给runBatchGSE自定义函数,定义的排名统计,以同样的方式做了基因组的成员geneSetTest(详见下文)。


用法----------Usage----------


runBatchGSE(dataList, fgsList, ...)



参数----------Arguments----------

参数:dataList
a list containing the gene-to-phenotype scores to be used as ranking statistics in the GSE analysis. This list is usually produced by running computeDrStat
一个列表,其中包含的基因表型在GSE分析排名统计分数。这个列表通常由运行computeDrStat


参数:fgsList
a list of FGS collection, in which each element is a list of character vectors, one for each gene set
佛光收集列表,其中每个元素是一个字符向量列表,每个基因组


参数:...
additional arguments to be passed to lower level functions (see details below)   
额外的参数被传递到较低级别的功能(详见下文)


Details

详情----------Details----------

This function performs enrichment analysis for all the gene-to-phenotype scores (argument dataList) passed to it over a list of F unctional Gene Set (FGS) (argument fgsList), returning a p-value for each FGS. Additional arguments can be bassed to this function to modify the way the enrichment test is performed, as follows:
这个函数执行所有分数的基因表型富集分析(参数dataList)过的F unctional基因组编码(FGS)名单(参数传递给它的fgsList),返回一个p值每个佛光山。额外的参数可以bassed这个功能修改浓缩执行测试,如下的方式:

absolute  logical, this specifies whether the absolute values of the ranking statistics  should be used in the test (the default being TRUE)
absolute逻辑,这指定是否排名统计的绝对值应在测试中使用(默认为True)

gseFunc  a function to perform GSE analysis. If not specified the default is the geneSetTest function from the limma package. If a function is specified by the user, the membership of the analyzed genes to a FGS, and the ranking statistics must be defined in the same way this is done for geneSetTest, and the new function must return an integer (usually a p-value) (see the help for geneSetTest)
gseFunc函数进行GSE分析。如果没有指定,默认是geneSetTestlimma包的功能。如果一个函数是由用户指定,到佛光山,排名统计分析基因的成员必须以同样的方式,这是geneSetTest定义,以及新的函数必须返回一个整数(通常p值)(见在geneSetTest的帮助下)

The following main arguments are used by geneSetTest:
使用geneSetTest以下的主要论点是:

type  character, specifies the type of statistics used to rank the genes by geneSetTest: 'f' for F-like statistics (default), 't' for t-like statistics, or 'auto' for an educated guess
type字符,指定用于统计排名geneSetTest的基因类型:'f'的F-统计(默认),'t'类似T-统计,或'auto'一个受过教育的猜测

alternative  character, defines the alternative with the following possible options: 'mixed' (default), 'either', 'up' or 'down', 'two.sided', 'greater', or 'less'
alternative字符,定义了以下可能的选择的替代方案:'mixed'(默认),'either','up'或'down','two.sided', 'greater'或'less'

ranks.only  logical, if TRUE (default) only ranks will be used by geneSetTest
ranks.only逻辑,如果TRUE(默认)只队伍将使用geneSetTest

nsim  numeric, the number of randomly selected sets of genes to be used  in simulations to  compute the p-value
nsim数字,随机选择的基因在模拟中使用的套的数量来计算p值


值----------Value----------

The output is a list of lists containing the set of enrichment results for all gene-to-phenotype scores and FGS collections used as input.
输出的是一个包含所有基因表型的成绩和FGS的集合作为输入的富集结果集的列表列表。


作者(S)----------Author(s)----------


Luigi Marchionni <a href="mailto:marchion@jhu.edu">marchion@jhu.edu</a>



参考文献----------References----------

"Integrating diverse genomic data using gene sets." Manuscript submitted.

举例----------Examples----------



###require limma to run the example[#需要limma运行的例子]
require(limma)

###load integrated gene-to-phenotype scores[#负荷综合分数的基因表型]
data(intScores)

###load separate gene-to-phenotype scores[#加载单独的基因表型的分数]
data(sepScores)

###load list of functional gene sets[#负荷列表的功能基因组]
data(fgsList)

###run GSE analysis in batch with default parameters[#GSE默认参数在批处理运行分析]
gseABS.int <- runBatchGSE(dataList=intScores, fgsList=fgsList)

###run GSE analysis in batch with alternative parameters[##运行在批处理GSE替代参数分析]
gseABS.sep <- runBatchGSE(dataList=sepScores, fgsList=fgsList, absolute=FALSE, type="t", alternative="up")

###run GSE analysis in batch passing an enrichment function[#运行GSE批次传递的丰富功能分析]
gseUP.int.2 <- runBatchGSE(dataList=intScores, fgsList=fgsList,
                           absolute=FALSE, gseFunc=wilcoxGST, alternative="up")

###define and use a new enrichment function[#定义和使用一个新的浓缩功能]
gseFunc <- function (selected, statistics, threshold) {
        diffExpGenes <- statistics > threshold
        tab <- table(diffExpGenes, selected)
        pVal <- fisher.test(tab)[["p.value"]]
        }
gseUP.sep.2 <- runBatchGSE(dataList=sepScores, fgsList=fgsList,
                                 absolute=FALSE, gseFunc=gseFunc, threshold=7.5)


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-24 20:53 , Processed in 0.027272 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表