找回密码
 注册
查看: 558|回复: 0

R语言 RNAither包 mainAnalysis()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 13:12:34 | 显示全部楼层 |阅读模式
mainAnalysis(RNAither)
mainAnalysis()所属R语言包:RNAither

                                         Wrapper function for full automated analysis
                                         包装功能的全自动化分析

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Performs a standard analysis of the data (quality and statistics) from a dataset file.
执行标准的分析数据从一个数据集文件(质量和统计)。


用法----------Usage----------


mainAnalysis(header, dataset, flagForSameExp, listOfNormalizations, listOfArgs4norm,
listOfStatTests, listOfArgs4stat, multTestAdj, hitScoringVec1, hitScoringVec2,
posNegFlag, flag4Gsea, vecOfChannels, whichOnto)



参数----------Arguments----------

参数:header
the header of a dataset file generated with generateDatasetFile  
数据集文件头生成的以generateDatasetFile


参数:dataset
an R data frame generated with generateDatasetFile  
R的数据框生成的以generateDatasetFile


参数:flagForSameExp
either 0 or 1. If 1, all experiments defined in the column  ScreenNb in the dataset file must have the same design (same type and same number of replicates - exact plate layout is irrelevant) so that Spearman's correlation coefficient can be computed between experiments (each with summarized replicates)  
0或1。如果为1,所有的实验中列的定义,“ ScreenNbDataSet中的文件必须具有相同的设计(相同类型和相同数量的复制 - 确切板布局是无关紧要的),这样可以计算实验之间的Spearman相关系数(每个与总结复制)


参数:listOfNormalizations
a list of the normalization function to apply. Can be LiWongRank, varAdjust, divNorm, quantileNormalization, BScore, ZScore, ZScorePerScreen, subtractBackground, lowessNorm, controlNorm  
申请标准化的函数的列表。可以LiWongRank,varAdjust,divNorm,quantileNormalization,BScore,ZScore,ZScorePerScreen,subtractBackground lowessNorm,controlNorm


参数:listOfArgs4norm
a list containing, for each element of  listofnormalizations, the arguments to be passed on  
一个列表,其中包含每个 listofnormalizations元素,通过参数


参数:listOfStatTests
a list of the statistical tests to perform. Can be Ttest, MannWhitney, RankProduct  
的统计测试,以执行列表。可以Ttest,MannWhitney,RankProduct


参数:listOfArgs4stat
a list containing, for each element of  listofstattests, the arguments to be passed on  
一个列表,其中包含每个 listofstattests元素,通过参数


参数:multTestAdj
indicates the p-value correction for multiple testing - one of  "holm",  "hochberg",  "hommel",  "bonferroni",  "BH",  "BY",  "fdr", or  "none" (Type ?p.adjust for details))
表示p值修正为多个测试 -  "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr"或 "none"(类型?p.adjust细节))


参数:hitScoringVec1
a vector of length 3 indicating (in that order):   - scoring according to p-value (0: no, 1: yes)  - scoring according to ZScore with ZScore < threshold (0: no, 1: yes), or according to ZScore < threshold and p-value < hitScoringVec2[1] (2)  - scoring according to ZScore with ZScore > threshold (0: no, 1: yes), or according to ZScore > threshold and p-value < hitScoringVec2[1] (2).   If hitScoringVec1[2] or hitScoringVec1[3] are equal to 2, hitScoringVec1[1] must be equal to one, otherwise p-values will not be computed.  
长度为3的向量表示(按顺序): - 得分根据p值(0:无,1:YES) - 得分根据与ZScore <阈值(0:NO,1:是)ZScore,或根据,以ZScore <阈值和p值<hitScoringVec2 [1](2) - 根据ZScore与ZScore>阈值(0:无,1:YES)的得分,或根据ZScore>阈值和p值< ; hitScoringVec2 [1](2)。如果hitScoringVec1 [2]或hitScoringVec1 [3]是等于2,hitScoringVec1 [1]必须等于一体,p值,否则将无法计算。


参数:hitScoringVec2
a vector of length 3 indicating the thresholds for hitscoringvec1  
长度为3的向量表示阈值的hitscoringvec1


参数:posNegFlag
either 0 (no controls available) or 1 (controls available)  
0(无控制)或1(控制提供)


参数:flag4Gsea
Can be:  - either 0: No GSEA analysis is performed  - or 1: A GSEA analysis is performed for each hit scoring method  - or a binary vector that allows to choose which hit scoring method(s) will be used for a GSEA analysis. Hit scoring methods are sorted as follows: first, hits are scored according to the p-values of each test specified in  listOfStatTests . Then, if the option of scoring hits according to p-values and Intensities is chosen (see  hitScoringVec1 , for each test, a hit vector is generated. Finally, if the option of scoring hits according to Intensities only is chosen, hit vectors are generated for this option.  
可以是: - 为0:没有GSEA分析 - 或1:一个GSEA分析每个命中得分方法 - 或一个二进制向量,允许选择击中计分法(S)将GSEA分析的。命中得分方法排序如下:第一,命中得分按照指定每个测试 listOfStatTests p值。然后,如果选择的选项,根据p值和强度的得分命中(见 hitScoringVec1 ,每个测试,命中向量生成。最后,如果只选择选项的得分命中根据强度,命中向量生成此选项。


参数:vecOfChannels
a character vector containing the names of the channels to be used for quality plots, for example  "SigIntensity" or  "NbCells"  
字符向量的渠道质量图使用的名称,例如, "SigIntensity"或 "NbCells"


参数:whichOnto
one of the three GO hierarchies:  "biological_process" ,  "molecular_function"  or  "cellular_component"  - used for the GSEA analysis  
三个层次好: "biological_process" , "molecular_function" 或 "cellular_component"  - 用于GSEA分析


值----------Value----------

Generates the html output files  index.html and  indexnorm.html containing the quality analysis of raw and normalized data, respectively, and  stats.html, containing the statistical analysis. If several normalization methods are applied, an indexnorm file is generated after each.
生成HTML输出文件 index.html和 indexnorm.html包含的原材料和规范化的数据质量分析,分别和 stats.html,包含的统计分析。如果几个标准化方法应用于indexnorm文件后生成的每个。


注意----------Note----------

This function is deprecated and kept only for backwards compatibility. Please use the  "rnaiter"  function instead.
此功能已被废弃,只为保持向后兼容性。请 "rnaiter" 功能,而不是。


举例----------Examples----------


data(exampleHeader, package="RNAither")
data(exampleDataset, package="RNAither")

mainAnalysis(header, dataset, 0, list(controlNorm), list(list(1, 0, "SigIntensity", 1)),
list(Ttest, MannWhitney), list(list("l", 1, "SigIntensity", "GeneName"),
list("l", 1, "SigIntensity", "GeneName")), "none", c(1, 0, 0), c(0.05, 0, 0), 1,
1, c("SigIntensity", "NbCells"), "biological_process")


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-25 09:26 , Processed in 0.057762 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表