findClusters(Repitools)
findClusters()所属R语言包:Repitools
Find Clusters Epigenetically Modified Genes
表观遗传修饰的聚类基因
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Given a table of gene positions that has a score column, genes will first be sorted into positional order and consecutive windows of high or low scores will be reported.
将报告基因由于基因的位置,有一个得分列表,将首先把位置顺序和连续的高或低的分数窗口排序。
用法----------Usage----------
findClusters(stats, score.col = NULL, w.size = NULL, n.med = NULL, n.consec = NULL,
cut.samps = NULL, maxFDR = 0.05, trend = c("down", "up"), n.perm = 100,
getFDRs = FALSE, verbose = TRUE)
参数----------Arguments----------
参数:stats
A data.frame with (at least) column chr, and a column of scores. Genes must be sorted in positional order.
一个data.frame(至少)列chr,分数列。基因必须按位置顺序。
参数:score.col
A number that gives the column in stats which contains the scores.
给出了一个数字,stats这列包含的分数。
参数:w.size
The number of consecutive genes to consider windows over.
连续基因的数量来考虑Windows。
参数:n.med
Minimum number of genes in a window, that have median score centred around them above a cutoff.
最少数量的基因在一个窗口中,有他们周围为中心的中位数以上的截止。
参数:n.consec
Minimum cluster size.
最小的簇大小。
参数:cut.samps
A vector of score cutoffs to calculate the FDR at.
得分截断的向量计算的FDR。
参数:maxFDR
The highest FDR level still deemed to be significant.
FDR的最高水平仍然被认为是显着。
参数:trend
Whether the clusters must have all positive scores (enrichment), or all negative scores (depletion).
无论是聚类必须有一切积极分(浓缩),或负的成绩(枯竭)。
参数:n.perm
How many random tables to generate to use in the FDR calculations.
多少随机表生成使用FDR计算。
参数:getFDRs
If TRUE, will also return the table of FDRs at a variety of score cutoffs, from which the score cutoff for calling clusters was chosen.
如果是TRUE,也将返回在各种得分截断,从中调用聚类的得分截止被选为的FDRs表。
参数:verbose
Whether to print progress of computations.
是否要打印的计算进度。
Details
详情----------Details----------
First, the median over a window of size w.size is calculated in a rolling window and then associated with the middle gene of the window. Windows are again run over the genes, and the gene at the centre of the window is significant if there are also at least n.med genes with representative medians above the score cutoff, in the window that surrounds it. These marker genes are extended outwards, for as long as the score has the same sign. The order of the stats rows is randomised, and this process in done for every randomisation.
首先,中位数超过一个窗口的大小w.size计算在滚动窗口,然后窗口中间的基因有关。 Windows是再次辗过的基因,基因是重要的,如果还有至少n.med基因与代表中位数以上的得分截止围绕它的窗口,在窗口的中心。这些标记基因是向外延伸,只要得分有相同的符号。 stats行的顺序是随机的,这个过程的每一个随机完成。
The procedure for calling clusters is done at a range of score cutoffs. The first score cutoff to give an FDR below maxFDR is chosen as the cutoff to use, and clusters are then called based on this cutoff.
调用聚类的过程是在得分截断的范围。给下面maxFDRFDR的第一次得分截止选择截止使用,聚类,然后根据这个截止。
值----------Value----------
If getFDRs is FALSE, then only the stats table, with an additional column, cluster. If getFDRs is TRUE, then a list with elements :
getFDRs如果是FALSE,则只有stats表,一个额外的列,cluster。 getFDRs如果为TRUE,那么一个元素的列表:
参数:table
The table stats with the additional column cluster.
表stats额外的列cluster。
参数:FDR
The table of score cutoffs tried, and their FDRs.
得分截断表尝试,FDRs。
作者(S)----------Author(s)----------
Dario Strbenac, Aaron Statham
参考文献----------References----------
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|