找回密码
 注册
查看: 639|回复: 0

R语言 reb包 summarizeByRegion()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 12:31:43 | 显示全部楼层 |阅读模式
summarizeByRegion(reb)
summarizeByRegion()所属R语言包:reb

                                        Compute Summary Statistics of Genome Regions
                                         计算基因组区域的统计摘要

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Splits the data into subsets based on genome mapping information, computes summary statistics for each region, and returns the results in a convenient form. (cgma stands for Comparative Genomic Microarray Analysis)
分为基因组图谱信息的子集的数据,计算每个区域的汇总统计,并在方便的形式返回结果。 (CGMA的比较基因组芯片分析)

This function supplies a t.test function at the empirically derived significance threshold (p.value = 0.005)
此功能提供经验得出的意义阈值(p.value = 0.005),1 t.test功能


用法----------Usage----------


cgma(eset, genome, chrom="ALL",ref=NULL,center=TRUE,aggrfun=NULL, p.value=0.005, FUN=t.test, verbose=TRUE, explode=FALSE ,...)



参数----------Arguments----------

参数:eset
an exprSet object
exprSet对象


参数:genome
an chromLocation object, such as on produced by buildChromLocation or buildChromMap
chromLocation对象,如由buildChromLocation或buildChromMap生产


参数:chrom
a character vector specifying the chromosomes to analyze
一个字符向量指定的染色体分析


参数:ref
a vector containing the index of reference samples from which to make comparisons. Defaults to NULL (internally referenced samples)  
矢量指数的参考样本,从中进行比较。默认为空(内部参考样本)


参数:center
boolean - re-center gene expression matrix columns. Helpful if ref is used
布尔 - 转口中心的基因表达矩阵的列。有益的,如果ref用于


参数:aggrfun
a function to summarizes/aggregates gene expression values that map to the same locations. If NULL, all values are included. Also see absMax
一个功能总结/聚合基因表达的值映射到相同的位置。如果为NULL,所有的值都包括在内。还可以看到absMax


参数:p.value
p.value cutoff, NA for all results, or TRUE for all t.stats and p.values
p.value截止,所有结果不适用,或适用于所有t.stats和p.values


参数:FUN
function by which to summarize the data
功能汇总数据


参数:verbose
boolean - print verbose output during execution?
布尔 - 打印输出在执行过程中的详细?


参数:explode
boolean - explode summary matrix into a full expression set?
布尔 - 爆炸总结成一个完整的表达集矩阵?


参数:...
further arguments pass to or used by the function
进一步的参数传递函数或使用


Details

详情----------Details----------

Gene expression values are separated into subsets that based on the 'chromLocation' object argument.  For example, buildChromMap can be used to produce a 'chromLocation' object composed of the genes that populate human chromosome 1p and chromosome 1q. The gene expression values from each of these regions are extracted from the 'exprSet' and a summary statistic is computed for each region.
基因的表达值分为“chromLocation对象参数的子集。例如,可用于生产buildChromMap“chromLocation对象填充人类染色体1p和染色体第一季度的基因组成。从这些区域的每一个基因的表达值提取“exprSet”的,并计算每个区域的汇总统计。

cgma is most straightforwardly used to identify regional gene expression biases when comparing a test sample to a reference sample. For example, a number of simple tests can be used to determine if a genomic region contains a disproportionate number of positive or negative log transformed gene expression ratios. The presence of such a regional expression bias can indicates an underlying genomic abnormality.
cgma是最直截了当的参考样本比较试验样品时,用于识别区域的基因表达偏见。例如,可用于一些简单的测试,以确定是否基因组区域中包含的积极或消极的log转化基因表达比率的数量不成比例。这样一个区域的表达偏见的存在可以说明一个基本的基因异常。

If multiple clones map to the same genomic locus the aggregate.by.loc argument can be used to include a summary value for the overlapping expression values rather then include all of the individual gene expression values. For example, if 50 copies of the actin gene are on a particular array and actin changes expression under a given condition, it may appear as though a regional expression bias exists as 50 values in a small region change expression.
如果多个克隆映射到相同的基因位点,可以用来aggregate.by.loc参数包括一个重叠的表达值的汇总值,而不是包括所有的单个基因的表达值。例如,如果在一个特定的数组和一个给定的条件下肌动蛋白表达变化的肌动蛋白基因的50份,它可能会出现区域表达偏见,虽然在一个小区域的变化表达为50值存在。

regmap is usually the best way to plot results of this function. idiogram  can also be used if you set the "explode" argument to TRUE.
regmap通常是最好的方式来画出这个函数的结果。 idiogram也可以被使用,如果你设置的“爆炸”的说法为TRUE。

buildChromLocation.2 can be used to create a chromLocation object in  which the genes can be divided a number of different ways. Separating the data by chromosome  arm was the original intent. If you use buildChromLocation.2  with the "arms" argument to build your chromLocation object, set the "chrom" argument  to "arms" in this function.
buildChromLocation.2可以用来创建chromLocation对象,其中的基因可以分为许多不同的方式。染色体臂分离数据的原意。如果你使用buildChromLocation.2的“武器”建立您chromLocation对象的论点,设置了“铬”的说法为“武器”,在此功能。


值----------Value----------


参数:m
A matrix of summary statistics
汇总统计矩阵


作者(S)----------Author(s)----------


Kyle A. Furge



参考文献----------References----------

<h3>See Also</h3>

举例----------Examples----------



## [#]
## NOTE: This requires an annotation package to work.[#注:这需要一个注解包工作。]
##       In this example packages "hu6800" and "golubEsets" are used.[#在这个例子中包“hu6800”和“golubEsets”。]
##       They can be downloaded from http://www.bioconductor.org[#他们可以从http://www.bioconductor.org下载]
##       "hu6800" is under MetaData, "golubEsets" is under Experimental Data.[#“hu6800”是根据元数据,“golubEsets”是根据实验数据。]

if(require(hu6800) &amp;&amp; require(golubEsets)) {
   data(Golub_Train)
   cloc <- buildChromMap("hu6800",c("1p","1q","2p","2q","3p","3q"))

   ## For one-color expression data[#对于色彩表现数据]
   ## compare the ALL samples to the AML samples[#比较,所有样品的AML样本]
   ## not particularly informative in this example[#在这个例子中,特别是信息的不]

   aml.ix <- which(Golub_Train$"ALL.AML" == "AML")
   bias <- cgma(eset=Golub_Train,ref=aml.ix,genome=cloc)
   regmap(bias,col=.rwb)
} else print("This example requires the hu6800 and golubEsets data
   packages.")

## A more interesting example[#一个更有趣的例子]

## The mcr.eset is a two-color gene expression exprSet[#mcr.eset是两色的基因表达exprSet的]
## where cytogenetically complex (MCR), [#单元遗传学复杂(MCR)]
## cytogenetically simple (CN) leukemia samples[#单元遗传学简单(CN)白血病样本]
## and normal control (MNC) samples were profiled against[异形对#和正常对照组(MNC)的样品]
## a pooled-cell line reference[#池单元行参考]
## The MCR eset data was obtained with permission. See PMID: 15377468[#MCR的ESET数据,获得许可。结论:15377468]

## Notice the dimished expression on chromosome 5 in the MCR samples[#请注意,在5号染色体上的MCR样品dimished表达]
## and the enhanced expression on chromosome 11[#和11号染色体上的表达增强]
## This reflects chromosome gains and losses as validated by CGH[#这反映了染色体的收益和亏损,全息验证]

   data("mcr.eset")
   data(idiogramExample)
   norms <- grep("MNC",colnames(mcr.eset@exprs))
   bias <- cgma(mcr.eset@exprs,vai.chr,ref=norms)
   regmap(bias,col=topo.colors(50))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-30 14:57 , Processed in 0.024704 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表