Isomap(RDRToolbox)
Isomap()所属R语言包:RDRToolbox
Isomap
ISOMAP
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Computes the Isomap embedding as introduced in 2000 by Tenenbaum, de Silva and Langford.
计算特南鲍姆,德席尔瓦和兰福德在2000年推出,在Isomap嵌入。
用法----------Usage----------
Isomap(data, dims = 2, k, mod = FALSE, plotResiduals = FALSE, verbose = TRUE)
参数----------Arguments----------
参数:data
N x D matrix (N samples, D features)
为N×D矩阵(N个样本,D功能)
参数:dims
vector containing the target space dimension(s)
向量目标空间尺寸(S)
参数:k
number of neighbours
邻居的数目
参数:mod
use modified Isomap algorithm
使用修改后的ISOMAP算法
参数:plotResiduals
show a plot with the residuals between the high and the low dimensional data
残差之间的高与低维数据显示图
参数:verbose
show a summary of the embedding procedure at the end
显示嵌入过程的总结,在年底
Details
详情----------Details----------
Isomap is a nonlinear dimension reduction technique, that preserves global properties of the data. That means, that geodesic distances between all samples are captured best in the low dimensional embedding. <br> This R version is based on the Matlab implementation by Tenenbaum and uses Floyd's Algorithm to compute the neighbourhood graph of shortest distances, when calculating the geodesic distances. <br> A modified version of the original Isomap algorithm is included. It respects nearest and farthest neighbours. <br> To estimate the intrinsic dimension of the data, the function can plot the residuals between the high and the low dimensional data for a given range of dimensions.
ISOMAP是一种非线性降维技术,保存数据的全局属性。这意味着,所有样品之间的测地距离被捕获在低维嵌入。参考本R版本是基于Matlab实现由特南鲍姆和使用Floyd的算法计算邻域图的最短距离,计算测地距离时。参考的原始ISOMAP算法的修改后的版本。它尊重最近和最远的邻居。 <br>要估计的内在维度的数据,该功能可以绘制一个给定的尺寸范围的高与低维数据之间的残差。
值----------Value----------
It returns a N x dim matrix (N samples, dim features) with the reduced input data (list of several matrices if more than one dimension was specified)
它减少输入数据(如果指定多个维度的几个矩阵列表)返回1为N×暗淡矩阵(N个样本,昏暗的功能)
作者(S)----------Author(s)----------
Christoph Bartenhagen
参考文献----------References----------
Matlab code is available at http://waldron.stanford.edu/~isomap/
举例----------Examples----------
## two dimensional Isomap embedding of a 1.000 dimensional dataset using k=5 neighbours[#两个维Isomap的CWME嵌入1.000三维数据集使用K = 5邻居]
d = generateData(samples=20, genes=1000, diffgenes=100, blocksize=10)
d_low = Isomap(data=d[[1]], dims=2, k=5)
## Isomap residuals for target dimensions 1-10[Isomap的CWME残差为目标尺寸1-10#]
d_low = Isomap(data=d[[1]], dims=1:10, k=5, plotResiduals=TRUE)
## three dimensional Isomap embedding of a 1.000 dimensional dataset using k=10 (nearest and farthest) neighbours[三个维Isomap的CWME嵌入1.000三维数据集使用K = 10(最近和最远的)邻居]
d = generateData(samples=20, genes=1000, diffgenes=100, blocksize=10)
d_low = Isomap(data=d[[1]], dims=3, mod=TRUE, k=10)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|