deriv_weight_estimator_BLH(RCASPAR)
deriv_weight_estimator_BLH()所属R语言包:RCASPAR
A function that gives the derivative of the objective function of the model for gradient-based optimization algorithms.
一个功能,使基于梯度的优化算法模型的目标函数的导数。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Given the necessary data, this function calculates the derivative of the objective function without a w.r.t. the baseline hazards and weights(regression coefficients) in the model to be used in gradient-based optimization algorithms.
给予必要的数据,这个函数计算目标函数的导数,没有一个WRT基线的危害,并在该模型重量(回归系数)用于在基于梯度的优化算法。
用法----------Usage----------
deriv_weight_estimator_BLH(geDataT, survDataT, weights_baselineH, q, s, a, b, groups)
参数----------Arguments----------
参数:geDataT
The co-variate data (gene expression or aCGH, etc...) of the patient set passed on by the user. It is a matrix with the co-variates in the columns and the subjects in the rows. Each cell corresponds to that rowth subject's columnth co-variate's value.
病人组(基因表达或aCGH等)的共同变量的数据传给用户。这是一个矩阵与合作中的列和行的科目的变元。每个单元格对应,该rowth题目的columnth的共同变量的值。
参数:survDataT
The survival data of the patient set passed on by the user. It takes on the form of a data frame with at least have the following columns “True_STs” and “censored”, corresponding to the observed survival times and the censoring status of the subjects consecutively. Censored patients are assigned a “1” while patients who experience an event are assigned “1”.
患者组的生存数据传给用户。它需要一个数据框的形式,至少有下列列“True_STs”和“审查”,相应的观测到的生存时间和审查的受试者连续状态。截患者被分配了一个“1”,而谁遇到事件的患者被指定为“1”。
参数:weights_baselineH
A single vector with the initial values of the baseline hazards followed by the weights(regression coefficients) for the co-variates.
单矢量与共同变元的权重(回归系数)危害基线的初始值。
参数:q
One of the two parameters on the prior distribution used on the weights (regression coefficients) in the model.
模型中的权重(回归系数)上使用的先验分布的两个参数之一。
参数:s
The second of the two parameters on the prior distribution used on the weights (regression coefficients) in the model.
第二先验分布的两个参数用于模型中的权重(回归系数)。
参数:a
The shape parameter for the gamma distribution used as a prior on the baseline hazards.
作为基线的危害之前使用伽玛分布的形状参数。
参数:b
The scale parameter for the gamma distribution used as a prior on the baseline hazards.
作为基线的危害之前使用伽玛分布的尺度参数。
参数:groups
The number of partitions along the time axis for which a different baseline hazard is to be assigned. This number should be the same as the number of initial values passed for the baseline hazards in the beginning of the “weights\_baselineH” argument.
被分配不同的基线危险是沿时间轴的分区数。这个数字应该是通过的“权重\ _baselineH”的说法开始在基线危害的初始值相同。
值----------Value----------
A vector of the same length as the “weights\_baselineH” argument corresponding to the calculated derivatives of the objective with respect to every component of “weights\_baselineH”.
作为“重\ _baselineH”的说法与尊重每一个组件的“砝码\ _baselineH”的目标计算的衍生工具的长度相同的向量。
注意----------Note----------
This function is in itself not ver useful to the user, but is used within the function weights\_BLH
此功能本身是没有版本对用户有用的,但在功能weights\_BLH
作者(S)----------Author(s)----------
Douaa Mugahid
参考文献----------References----------
Society of Statistics, 34(2), 187-220. The extension of the Cox model to its stepwise form was adapted from: Ibrahim, J.G, Chen, M.-H. & Sinha, D. (2005). Bayesian Survival Analysis (second ed.). NY: Springer. as well as Kaderali, Lars.(2006) A Hierarchial Bayesian Approach to Regression and its Application to Predicting Survival Times in Cancer Patients. Aachen: Shaker The prior on the regression coefficients was adopted from: Mazur, J., Ritter,D.,Reinelt, G. & Kaderali, L. (2009). Reconstructing Non-Linear dynamic Models of Gene Regulation using Stochastic Sampling. BMC Bioinformatics, 10(448).
参见----------See Also----------
weight_estimator_BLH, codederiv_weight_estimator_BLH_noprior
weight_estimator_BLH,codederiv_weight_estimator_BLH_noprior
举例----------Examples----------
data(Bergamaschi)
data(survData)
deriv_weight_estimator_BLH(survDataT=survData[1:10, 9:10], geDataT=Bergamaschi[1:10, 1:2], weights_baselineH=c(0.1,0.2,0.3,rep(0,2)), q=1, s=1, a=1.5, b=0.3, groups=3)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|