RP(RankProd)
RP()所属R语言包:RankProd
Rank Product Analysis of Microarray
排名产品的芯片分析
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Perform rank product method to identify differentially expressed genes. It is possible to do either a one-class or two-class analysis.
执行秩产品的方法,识别差异表达的基因。这是可以做到的一类或两个阶级的分析。
用法----------Usage----------
RP(data,cl,num.perm=100,logged=TRUE,
na.rm=FALSE,gene.names=NULL,plot=FALSE, rand=NULL)
参数----------Arguments----------
参数:data
the data set that should be analyzed. Every row of this data set must correspond to a gene.
应分析数据集。这组数据的每一行必须对应一个基因。
参数:cl
a vector containing the class labels of the samples. In the two class unpaired case, the label of a sample is either 0 (e.g., control group) or 1 (e.g., case group). For one class data, the label for each sample should be 1.
矢量样品含有类标签。在这两个类的未成的情况下,样品的标签是0(例如,对照组)或1(例如,病例组)。对于一类的数据,对每一个样品的标签应为1。
参数:num.perm
number of permutations used in the calculation of the null density. Default is 'num.perm=100'.
空密度计算中使用的数字排列。默认是“num.perm = 100。
参数:logged
if "TRUE", data has bee logged, otherwise set it to "FALSE"
如果“真”,数据记录了蜜蜂,否则将其设置为“FALSE”
参数:na.rm
if 'FALSE' (default), the NA value will not be used in computing rank. If 'TRUE', the missing values will be replaced by the gene-wise mean of the non-missing values. Gene with all values missing will be assigned "NA"
如果“假”(默认),NA值将不会被用于计算排名。如果“TRUE”,缺少的值将被替换的非缺失值的基因明智的意思。所有值的基因缺失,将被指派为“NA”
参数:gene.names
if "NULL", no gene name will be assigned to the estimated percentage of false positive predictions (pfp).
如果“空”,没有基因的名称将被分配到的假阳性预测估计百分比(PFP)。
参数:plot
If "TRUE", plot the estimated pfp verse the rank of each gene.
如果“真”,绘制估计亲民党的诗句,每一个基因的排名。
参数:rand
if specified, the random number generator will be put in a reproducible state using the rand value as seed.
如果指定,随机数发生器将在一个可重复使用的种子兰特值的状态。
值----------Value----------
A result of identifying differentially expressed genes between two classes. The identification consists of two parts, the identification of up-regulated and down-regulated genes in class 2 compared to class 1, respectively.
一个确定的结果,两个类之间的差异表达的基因。由两部分组成,分别比1级2级上调和下调的基因鉴定,鉴定。
参数:pfp
estimated percentage of false positive predictions (pfp) up to the position of each gene under two identificaiton each
估计比例的假阳性预测(亲民党)在两个identificaiton每个基因的位置每个
参数:pval
estimated pvalue for each gene being up- and down-regulated
估计每个基因pvalue和下调
参数:RPs
Original rank-product of each genes for two dentificaiton each
原职级,每个基因的两个dentificaiton每个产品
参数:RPrank
rank of the rank product of each genes
排名产品的每一个基因的秩
参数:Orirank
original rank in each comparison, which is used to construct rank product
原来的排名在每一个比较,它是用来兴建排名产品
参数:AveFC
fold change of average expression under class 1 over that under class 2. log-fold change if data is in log scaled, original fold change if data is unlogged.
倍下1级比2级下的平均表达变化。log倍的变化,如果在log中的数据规模,原倍的变化,如果数据未记录。
注意----------Note----------
Percentage of false prediction (pfp), in theory, is equivalent of false discovery rate (FDR), and it is possible to be large than 1.
在理论上,是虚假的预测(PFP)的百分比,相当于假发现率(FDR),比1大,它是可能的。
The function looks for up- and down- regulated genes in two seperate steps, thus two pfps and pvalues are computed and used to identify gene that belong to each group.
功能看起来和下调基因在两个独立的步骤,从而计算和用于识别基因属于每个组两个PFPS和pvalues的。
This function is suitable to deal with data from a single origin, e.g. single experiment. If the data has different origin, e.g. generated at different laboratories, please refer RP.advance.
此功能适用于处理从一个单一来源的数据,例如单一的实验。如果数据有不同的起源,例如产生不同的实验室,请参阅RP.advance。。
作者(S)----------Author(s)----------
Fangxin Hong <a href="mailto:fhong@salk.edu">fhong@salk.edu</a>
参考文献----------References----------
P.(2004) Rank Products:A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments, FEBS Letter, 57383-92
参见----------See Also----------
topGene RPadvance plotRP
topGeneRPadvanceplotRP
举例----------Examples----------
# Load the data of Golub et al. (1999). data(golub) [Golub等装入的数据。 (1999年)。数据(戈卢布)]
# contains a 3051x38 gene expression[包含一个的3051x38基因表达]
# matrix called golub, a vector of length called golub.cl [矩阵称为戈卢布,向量的长度称为golub.cl]
# that consists of the 38 class labels,[由38类标签,]
# and a matrix called golub.gnames whose third column [矩阵称为其第三列golub.gnames]
# contains the gene names.[包含的基因名称。]
data(golub)
#use a subset of data as example, apply the rank [使用数据的一个子集为例,申请排名]
#product method[产品的方法]
subset <- c(1:4,28:30)
#Setting rand=123, to make the results reproducible,[设置兰特= 123,结果重现性好,]
RP.out <- RP(golub[,subset],golub.cl[subset],rand=123)
# class 2: label =1, class 1: label = 0[第2类:标签= 1,第1类:标签= 0]
#pfp for identifying genes that are up-regulated in class 2 [识别基因的亲民党上调2级]
#pfp for identifying genes that are down-regulated in class 2 [亲民党为确定在2级下调的基因]
head(RP.out$pfp)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|