找回密码
 注册
查看: 1016|回复: 0

R语言 qpgraph包 qpPAC()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 11:40:45 | 显示全部楼层 |阅读模式
qpPAC(qpgraph)
qpPAC()所属R语言包:qpgraph

                                         Estimation of partial correlation coefficients
                                         偏相关系数的估计

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Estimates partial correlation coefficients (PACs) for a Gaussian graphical model with undirected graph G and their corresponding P-values for the hypothesis of zero partial correlations.
估计高斯图形与无向图G,其相应的P值和零偏相关假说模型的偏相关系数(PACS)。


用法----------Usage----------


## S4 method for signature 'ExpressionSet'
qpPAC(X, g, return.K=FALSE, tol=0.001,
                                matrix.completion=c("HTF", "IPF"), verbose=TRUE,
                                R.code.only=FALSE)
## S4 method for signature 'data.frame'
qpPAC(X, g, return.K=FALSE, long.dim.are.variables=TRUE,
                             tol=0.001, matrix.completion=c("HTF", "IPF"),
                             verbose=TRUE, R.code.only=FALSE)
## S4 method for signature 'matrix'
qpPAC(X, g, return.K=FALSE, long.dim.are.variables=TRUE,
                         tol=0.001, matrix.completion=c("HTF", "IPF"),
                         verbose=TRUE, R.code.only=FALSE)



参数----------Arguments----------

参数:X
data set from where to estimate the partial correlation coefficients. It can be an ExpressionSet object, a data frame or a matrix.
数据集从何处来估计的偏相关系数。它可以是一个ExpressionSet对象,一个数据框或一个矩阵。


参数:g
either a graphNEL object or an adjacency matrix of the given undirected graph.
无论是graphNEL对象或给定的无向图的邻接矩阵。


参数:return.K
logical; if TRUE this function also returns the concentration matrix K; if FALSE it does not return it (default).
逻辑,如果为TRUE,函数也返回浓度矩阵K;如果为FALSE,它不会返回它(默认)。


参数:long.dim.are.variables
logical; if TRUE it is assumed that when X is a data frame or a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.
如果为TRUE逻辑;假定X是一个数据框或一个矩阵,较长的尺寸是一个定义的随机变量(默认);如果为FALSE,则随机变量的假设是在列数据框或矩阵。


参数:tol
maximum tolerance in the application of the IPF algorithm.
在IPF的算法应用的最大容忍。


参数:matrix.completion
algorithm to employ in the matrix completion operations employed to construct a positive definite matrix with the zero pattern specified in g
算法采用矩阵的完成操作,以构建与g指定零模式正定矩阵


参数:verbose
show progress on the calculations.
计算表明进展。


参数:R.code.only
logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.
逻辑;如果为FALSE则更快的C实现使用(默认);如果TRUE,那么只有R代码被执行。


Details

详情----------Details----------

In the context of maximum likelihood estimation (MLE) of PACs it is a necessary condition for the existence of MLEs that the sample size n is larger than the clique number w(G) of the graph G.
在PACS的最大似然估计(MLE)的范围内,它是存在的极大似然估计的一个必要条件,样本大小的n比团数w(G)图G较大的 。

The PAC estimation is done by first obtaining a MLE of the covariance matrix using the qpIPF function and the P-values are calculated based on the estimation of the standard errors (see Roverato and Whittaker, 1996).
政府帐目委员会的估计是首先使用qpIPF功能的P-值计算标准误差的估计,(见Roverato和惠特克,1996年)的基础上取得的协方差矩阵的MLE。


值----------Value----------

A list with two matrices, one with the estimates of the PACs and the other with their P-values.
与两个矩阵的PACS估计,其P值列表。


作者(S)----------Author(s)----------


R. Castelo and A. Roverato



参考文献----------References----------

Gaussian graphical model search from microarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.
networks from microarray data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.
Gaussian models. Stat. Comput., 6:297-302, 1996.

参见----------See Also----------

qpGraph qpCliqueNumber qpClique qpGetCliques qpIPF
qpGraphqpCliqueNumberqpCliqueqpGetCliquesqpIPF


举例----------Examples----------


require(mvtnorm)

nVar <- 50  ## number of variables[#变量]
maxCon <- 5 ## maximum connectivity per variable[#最大连接每个变量]
nObs <- 30  ## number of observations to simulate[#号观测到模拟]

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

nrr.estimates <- qpNrr(X, verbose=FALSE)

g <- qpGraph(nrr.estimates, 0.5)

pac.estimates <- qpPAC(X, g=g, verbose=FALSE)

## distribution absolute values of the estimated[#分布估计的绝对值]
## partial correlation coefficients of the present edges[#目前的边缘部分的相关系数]
summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) &amp; A]))

## distribution absolute values of the estimated[#分布估计的绝对值]
## partial correlation coefficients of the missing edges[#的失踪边缘的偏相关系数]
summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) &amp; !A]))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-31 20:51 , Processed in 0.027983 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表