qpGraphDensity(qpgraph)
qpGraphDensity()所属R语言包:qpgraph
Densities of resulting qp-graphs
密度,导致QP图
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Calculates and plots the graph density as function of the non-rejection rate.
功能的非废品率的计算和绘制图形密度。
用法----------Usage----------
qpGraphDensity(nrrMatrix, threshold.lim=c(0,1), breaks=5,
plot=TRUE, qpGraphDensityOutput=NULL,
density.digits=0,
titlegd="graph density as function of threshold")
参数----------Arguments----------
参数:nrrMatrix
matrix of non-rejection rates.
矩阵非排斥反应发生率。
参数:threshold.lim
range of threshold values on the non-rejection rate.
对非废品率阈值的范围。
参数:breaks
either a number of threshold bins or a vector of threshold breakpoints.
无论是阈值箱数或矢量阈值的断点。
参数:plot
logical; if TRUE makes a plot of the result; if FALSE it does not.
逻辑;如果为TRUE,使结果的图;如果为FALSE,它没有。
参数:qpGraphDensityOutput
output from a previous call to qpGraphDensity. This allows one to plot the result changing some of the plotting parameters without having to do the calculation again.
从以前的通话qpGraphDensity输出。这允许一个绘制一些绘图参数的改变,而无需再次做计算的结果。
参数:density.digits
number of digits in the reported graph densities.
在图密度位数。
参数:titlegd
main title to be shown in the plot.
要显示主标题中的图。
Details
详情----------Details----------
The estimate of the sparseness of the resulting qp-graphs is calculated as one minus the area enclosed under the curve of graph densities.
QP-图稀疏的估计是一减下图密度的曲线围成的面积计算。
值----------Value----------
A list with the graph density as function of threshold and an estimate of the sparseness of the resulting qp-graphs across the thresholds.
图的密度函数的阈值和估计造成跨阈值QP图稀疏名单。
作者(S)----------Author(s)----------
R. Castelo and A. Roverato
参考文献----------References----------
Gaussian graphical model search from microarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.
参见----------See Also----------
qpNrr qpAvgNrr qpEdgeNrr qpClique
qpNrrqpAvgNrrqpEdgeNrrqpClique
举例----------Examples----------
require(mvtnorm)
nVar <- 50 ## number of variables[#变量]
maxCon <- 5 ## maximum connectivity per variable[#最大连接每个变量]
nObs <- 30 ## number of observations to simulate[#号观测到模拟]
set.seed(123)
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
## the higher the q the sparser the qp-graph[#Q值越高,稀疏QP图]
nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)
qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|