biplot.pcaRes(pcaMethods)
biplot.pcaRes()所属R语言包:pcaMethods
Plot a overlaid scores and loadings plot
绘制一个覆盖分数和负荷的图
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Visualize two-components simultaneously
同时可视化组件
用法----------Usage----------
biplot.pcaRes(x, choices=1:2, scale=1, pc.biplot=FALSE, ...)
参数----------Arguments----------
参数:x
a pcaRes object
1 pcaRes对象
参数:choices
which two pcs to plot
这两台电脑绘制
参数:scale
The variables are scaled by lambda^scale and the observations are scaled by lambda ^ (1-scale) where lambda are the singular values as computed by princomp. Normally 0 <= scale <= 1, and a warning will be issued if the specified 'scale' is outside this range.
变量缩放lambda^scale和意见缩放lambda ^ (1-scale)其中lambda的奇异值作为计算princomp。通常0 <= scale <= 1,并警告将发出超出这个范围,如果指定的“规模”。
参数:pc.biplot
If true, use what Gabriel (1971) refers to as a "principal component biplot", with lambda = 1 and observations scaled up by sqrt(n) and variables scaled down by sqrt(n). Then the inner products between variables approximate covariances and distances between observations approximate Mahalanobis distance.
如果情况属实,使用加布里埃尔(1971年),是指作为“主成分双标图”lambda = 1“SQRT(N)和SQRT(N)缩放变量缩放观察。然后变量之间的近似协方差和观测之间的距离近似马氏距离内的产品。
参数:...
optional arguments to be passed to biplot.default. </table>
可选参数被传递到biplot.default。 </ TABLE>
Details
详情----------Details----------
This is a method for the generic function 'biplot'. There is considerable confusion over the precise definitions: those of the original paper, Gabriel (1971), are followed here. Gabriel and Odoroff (1990) use the same definitions, but their plots actually
这是一个通用功能“双标图”的方法。有过确切的定义相当混乱:这里的原始文件,加布里埃尔(1971年),其次。 Gabriel和Odoroff(1990)使用相同的定义,但他们的图实际上
值----------Value----------
a plot is produced on the current graphics device.
当前图形设备上产生的图。
作者(S)----------Author(s)----------
Kevin Wright, Adapted from <code>biplot.prcomp</code>
参见----------See Also----------
prcomp, pca, princomp
prcomp,pca,princomp
举例----------Examples----------
pcIr <- pca(iris[,1:4])
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|