NTW-package(NTW)
NTW-package()所属R语言包:NTW
Gene interaction network and perturbation targets predictions
基因相互作用网络和扰动的目标预测
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This package includes the functions for estimating the gene-gene interaction network (a matrix, named A, with genes as rows and columns) and the associated transcriptional targets of the perturbations (a matrix, named P, with genes as rows and perturbations as columns). These estimations are computed with the NTW algorithm, a gene network inference algorithm based on ODE (ordinary differential equation) method, see reference. In this package, the whole A matrix and P matrix are estimated row by row with the function AP.estimation.Srow, and built together with the function NTW. AP.estimation.Srow can be used independently so that estimation of each row can be performed in parallel, improving computation time. For solving the steady state ODE equations, 3 regression methods are supplied: geo, sse and ml, see details in the the corresponding function help pages. In addition, in order to accelerate the estimation of matrix A, an option is available to make use of some prior information such as gene association (output from other gene netwrok inference algorithms, or from literature) in NTW. The regression methods used in forward or backward mode makes 6 possibilities available for estimating a single row of A matrix. The main functions in this package are listed below,
这个软件包包括功能基因 - 基因相互作用网络(矩阵,行和列的基因,命名为A)和相关的转录目标(一个矩阵,称为P基因的行和列的扰动,扰动的估计)。这些估计计算,新界西的算法,一个基因网络推理算法的基础上的ODE(常微分方程)的方法,见参考文献。在这个包中,整个矩阵和P矩阵估计按行功能AP.estimation.Srow,并建立与功能新界西。 AP.estimation.Srow可以独立使用,使每一行的估计可以并行执行,提高计算时间。为了解决稳态ODE方程,3回归方法提供:GEO,上证所和毫升,相应功能的帮助页面中看到的细节。此外,为了加速矩阵A的估计,有一个选项是可利用一些先验信息,如基因协会(由其他基因笔网络推理算法,输出或从文学)在新界西。向前或向后模式中使用回归方法,使6的可能性估计单列的矩阵。下面列出这个包中的主要职能,
NTW, to estimate the whole matrix A and P (if P is unknown).
新界西,估计整个矩阵A和P(如果P是未知的)。
AP.estimation.Srow, to estimate one single row in A and P .
AP.estimation.Srow,估计在A和P的一个单列。
A.estimation.Srow, to estimate one single row in A with P known.
A.estimation.Srow,估计在一个带够称为单列。
backward and forward, to estimate one single row of matrix A with different patterns of using prior gene association information.
向前或向后,估计矩阵与一个不同的模式,使用前基因关联信息的一个单列。
method.geo, method.sse and method.ml, to estimate one single row of matrix A with different regression methods.
method.geo,method.sse和method.ml,矩阵与一个不同的回归方法来估计一个单列。
comb.matrix, sub-function to create all the combinations for regressor locations.
comb.matrix,子功能创建所有的回归量位置的组合。
P.preestimation, pre-estimate P matrix according to the gene expression data.
p.preestimation,预先估计的P矩阵,根据基因表达数据。
Details
详情----------Details----------
作者(S)----------Author(s)----------
Wei Xiao, Yin Jin, Darong Lai, Xinyi Yang, Yuanhua Liu, Christine Nardini
Maintainer: Yuanhua Liu <liuyuanhua@picb.ac.cn>
参考文献----------References----------
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|