找回密码
 注册
查看: 537|回复: 0

R语言 miRNApath包 miRNApath-package()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 01:03:14 | 显示全部楼层 |阅读模式
miRNApath-package(miRNApath)
miRNApath-package()所属R语言包:miRNApath

                                         miRNApath: Pathway Enrichment for miRNA Expression Data
                                         miRNApath:miRNA表达数据的途径富集

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This package provides methods for assessing the statistical  over-representation of miRNA effects on gene sets, using supplied miRNA-to-gene associations. Because these associations are notably many-to-many (one miRNA to many genes; one gene affected by many miRNAs) the assessment is complex and warrants perhaps different approaches than are classically performed on differential gene expression datasets.
这个包提供了用于评估基因组统计miRNA的作用表示过,使用提供的miRNA基因协会的方法。由于这些协会,特别是许多一对多(一个miRNA的许多基因,一个基因,许多miRNA的影响)比经典差的基因表达数据集上进行评估是复杂的,认股权证也许不同的方法。


Details

详情----------Details----------


作者(S)----------Author(s)----------



James M. Ward

Maintainer: James M. Ward <jmw86069@gmail.com>




参考文献----------References----------

in Alzheimer's disease brain and CSF yields putative  biomarkers and insights into disease pathways, Journal of Alzheimer's Disease 14, 27-41.

参见----------See Also----------

loadmirnapath, filtermirnapath, loadmirnatogene, loadmirnapathways, runEnrichment
loadmirnapath,filtermirnapath,loadmirnatogene,loadmirnapathways,runEnrichment


举例----------Examples----------


## Not run: [#无法运行:]
## Start with miRNA data from this package[从这个包#开始的miRNA数据]
data(mirnaobj);

## Write a file as example of required input[#写的一个文件所需的输入为例]
write.table(mirnaobj@mirnaTable, file = "mirnaTable.txt",
    quote = FALSE, row.names = FALSE, col.names = TRUE, na = "",
    sep = "\t");

## Now essentially load it back, but assign column headers[#现在基本上加载它,但指定的列标题]
mirnaobj <- loadmirnapath( mirnafile = "mirnaTable.txt",
    pvaluecol = "P-value", groupcol = "GROUP",
    mirnacol = "miRNA Name", assayidcol = "ASSAYID" );

## Start with miRNA data from this package[从这个包#开始的miRNA数据]
data(mirnaobj);

## Write a file as example of required input[#写的一个文件所需的输入为例]
write.table(mirnaobj@mirnaGene, file = "mirnaGene.txt",
    quote = FALSE, row.names = FALSE, col.names = TRUE, na = "",
    sep = "\t");

## Load the miRNA to gene associations[#加载的miRNA基因协会]
mirnaobj <- loadmirnatogene( mirnafile = "mirnaGene.txt",
    mirnaobj = mirnaobj, mirnacol = "miRNA Name",
    genecol = "Entrez Gene ID",
    columns = c(assayidcol = "ASSAYID") );

## Write a file as example of required input[#写的一个文件所需的输入为例]
write.table(mirnaobj@mirnaPathways, file = "mirnaPathways.txt",
    quote = FALSE, row.names = FALSE, col.names = TRUE, na = "",
    sep = "\t");

## Load the gene to pathway associations[#加载基因通路协会]
mirnaobj <- loadmirnapathways( mirnaobj = mirnaobj,
    pathwayfile = "mirnaPathways.txt",
    pathwaycol = "Pathway Name", genecol = "Entrez Gene ID");

## Annotate hits by filtering by P-value 0.05[#注解命中过滤的P-值0.05]
mirnaobj <- filtermirnapath( mirnaobj, pvalue = 0.05,
    expression = NA, foldchange = NA );

## Now run enrichment test[#现在运行铀浓缩试验]
mirnaobj <- runEnrichment( mirnaobj=mirnaobj, Composite=TRUE,
   groups=NULL, permutations=0 );

## Print out a summary table of significant results[#打印出重大成果汇总表]
finaltable <- mirnaTable( mirnaobj, groups=NULL, format="Tall",
    Significance=0.1, pvalueTypes=c("pvalues") );
finaltable[1:4,];

## Example which calls heatmap function on the resulting data[#调用所产生的数据热图功能的范例]
widetable <- mirnaTable( mirnaobj, groups=NULL, format="Wide",
    Significance=0.1, na.char=NA, pvalueTypes=c("pvalues") );
## Assign 1 to NA values, assuming they're all equally[#指定1到NA值,假设他们同样]
## non-significant[#非显着]
widetable[is.na(widetable)] <- 1;

## Display a heatmap of the result across sample groups[#显示的结果,整个样本组的热图]
pathwaycol <- mirnaobj@columns["pathwaycol"];
pathwayidcol <- mirnaobj@columns["pathwayidcol"];
rownames(widetable) <- apply(widetable[,c(pathwaycol,
   pathwayidcol)], 1, function(i)paste(i, collapse="-"));
wt <- as.matrix(widetable[3:dim(widetable)[2]], mode="numeric")
heatmap(wt, scale="col");

## Show results where pathways are shared in four or more[#显示结果在四个或更多的共享途径]
## sample groups[#样品组]
pathwaySubset <- apply(wt, 1, function(i)
{
   length(i[i < 1]) >= 4;
} )
heatmap(wt[pathwaySubset,], scale="row");

## End(Not run)[#结束(不运行)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-3 07:15 , Processed in 0.022905 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表