modelOutcome(MergeMaid)
modelOutcome()所属R语言包:MergeMaid
Compare regression coefficients across studies
比较研究之间的回归系数
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Given a set of merged studies, this function calculates study specific regression coefficients for each gene.
鉴于一套合并的研究,这个函数计算每个基因研究具体的回归系数。
用法----------Usage----------
modelOutcome(x,outcome,outcome2=NULL,method=c("linear","logistic","cox"),...)
参数----------Arguments----------
参数:x
Object of class mergeExpressionSet.
对象类mergeExpressionSet。
参数:method
Method specifies the model used to generate coefficients. At this time only linear regression, logistic regression, and Cox hazard rates are implemented.
方法指定用于生成系数模型。此时唯一的线性回归,logistic回归和Cox风险率来实现。
参数:outcome, outcome2
The format for the outcome variable depends on the model used. For linear regression, outcome should be a continous response variable, for logistic regression, it should be a binary response variable, and for Cox hazard rates it should be time of event. Outcome 2 is currently used only in the calculation of hazard rates, and should be a binary variable indicating censoring status for each subject. If outcome is a vector of length equal to number of studies, then each element represents the column in the ExpressionSet phenoData slot for that study. If outcome is a list, then each list element should have actual outcome data for the corresponding study.
结果变量的格式取决于所用的模型。线性回归,结果应该是一个连续反应变量logistic回归,它应该是一个二进制的响应变量,Cox风险率,它应该是事件的时间。结果2目前仅用于风险率的计算,应该是一个二进制的变量,表示每个科目的审查状态。如果结果是一个向量的长度等于多项研究,然后每个元素代表列在该研究的ExpressionSet phenoData插槽。如果结果是一个列表,然后每个列表元素应该有相应的研究的实际结果数据。
参数:...
Not implemented at this time
此时不落实
值----------Value----------
The output is a mergeCoeff object.
的输出是mergeCoeff的对象。
参见----------See Also----------
modelOutcome, mergeCoeff-class
modelOutcome,mergeCoeff-class
举例----------Examples----------
if(require(Biobase) & require(MASS) & require(survival)){
data(mergeData)
merged <- mergeExprs(sample1,sample2,sample3)
log.coeff <- modelOutcome(merged,outcome=c(1,1,1),method="logistic")
plot(coeff(log.coeff))
linear.coeff <- modelOutcome(merged[1:2],outcome=c(3,3),method="linear")
plot(zscore(linear.coeff),xlab="study 1",ylab="study 2")
event1<-rbinom(100,1,.5)
event2<-rbinom(50,1,.5)
event3<-rbinom(70,1,.5)
out1<-rnorm(100,5,1)
out2<-rnorm(50,5,1)
out3<-rnorm(70,5,1)
out<-list(out1,out2,out3)
even<-list(event1,event2,event3)
cox.coeff<-modelOutcome(merged,outcome2=even,outcome=out,method="cox")
plot(coeff(cox.coeff))
}
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|