computeMBPCR(mBPCR)
computeMBPCR()所属R语言包:mBPCR
Estimate the copy number profile
估计拷贝数配置文件
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Function to estimate the copy number profile with a piecewise constant function using mBPCR. Eventually, it is possible to estimate the profile with a smoothing curve using either the Bayesian Regression Curve with K_2 (BRC with K_2) or the Bayesian Regression Curve Averaging over k (BRCAk). It is also possible to choose the estimator of the variance of the levels rhoSquare (i.e. either \hat{ρ}_1^2 or \hat{ρ}^2) and by default \hat{ρ}_1^2 is used.
函数来估计与分段常数使用mBPCR功能的拷贝数配置文件。最终,它是可能的,估计用K_2使用贝叶斯回归曲线的平滑曲线轮廓(商业登记证与K_2)或贝叶斯回归曲线,平均超过K(BRCAk)。它也可以选择水平的方差估计rhoSquare(即:要么\hat{ρ}_1^2或\hat{ρ}^2)和默认的\hat{ρ}_1^2使用。
用法----------Usage----------
computeMBPCR(y, kMax=50, nu=NULL, rhoSquare=NULL, sigmaSquare=NULL, typeEstRho=1, regr=NULL)
参数----------Arguments----------
参数:y
array containing the log2ratio of the copy number data
数组,其中包含的拷贝数数据log2ratio
参数:kMax
maximum number of segments
段的最大数量
参数:nu
mean of the segment levels. If nu=NULL, then the algorithm estimates it on the sample.
指段的水平。如果nu=NULL,然后算法估计样品。
参数:rhoSquare
variance of the segment levels. If rhoSquare=NULL, then the algorithm estimates it on the sample.
段水平的差异。如果rhoSquare=NULL,然后算法估计样品。
参数:sigmaSquare
variance of the noise. If sigmaSquare=NULL, then the algorithm estimates it on the sample.
噪声方差。如果sigmaSquare=NULL,然后算法估计样品。
参数:typeEstRho
choice of the estimator of rhoSquare. If typeEstRho=1, then the algorithm estimates rhoSquare with \hat{ρ}_1^2, while if typeEstRho=0, it estimates rhoSquare with \hat{ρ}^2.
rhoSquare估计的选择。如果typeEstRho=1,然后算法估计rhoSquare用\hat{ρ}_1^2,而typeEstRho=0如果,估计rhoSquare\hat{ρ}^2。
参数:regr
choice of the computation of the regression curve. If regr=NULL, then the regression curve is not computed, if regr="BRC" the Bayesian Regression Curve with K_2 is computed (BRC with K_2), if regr="BRCAk" the Bayesian Regression Curve Averaging over k is computed (BRCAk).
计算回归曲线的选择。如果regr=NULL,然后回归曲线没有计算,如果regr="BRC"与K_2贝叶斯回归曲线计算(商业登记证与K_2),如果regr="BRCAk"贝叶斯回归曲线平均在K计算机(BRCAk)。
Details
详情----------Details----------
By default, the function estimates the copy number profile with mBPCR and estimating rhoSquare on the sample, using \hat{ρ}_1^2. It is also possible to use \hat{ρ}^2 as estimator of rhoSquare, by setting typeEstRho=0, or to directly set the value of the parameter.
默认情况下,功能估计与mBPCR副本数量的个人资料和样品rhoSquare估计,使用\hat{ρ}_1^2。它也可以使用\hat{ρ}^2估计rhoSquare,通过设置typeEstRho=0,或直接设置的参数值。
The function gives also the possibility to estimate the profile with a Bayesian regression curve: if regr="BRC" the Bayesian Regression Curve with K_2 is computed (BRC with K_2), if regr="BRCAk" the Bayesian Regression Curve Averaging over k is computed (BRCAk).
该功能也给的可能性估计与贝叶斯回归曲线轮廓:如果regr="BRC"K_2贝叶斯回归曲线是计算机,如果K_2(regr="BRCAk",BRC)贝叶斯回归曲线,平均在K计算机(BRCAk)。
值----------Value----------
A list containing:
一份列表,列出:
参数:<code>estK</code>
the estimated number of segments
段的估计数
参数:<code>estBoundaries</code>
the estimated boundaries
估计边界
参数:<code>estPC</code>
the estimated profile with mBPCR
的估计mBPCR概况
参数:<code>regrCurve</code>
the estimated bayesian regression curve. It is returned only if regr!=NULL.
估计贝叶斯回归曲线。它只有regr!=NULL返回。
参数:<code>nu</code>
参数:<code>rhoSquare</code>
参数:<code>sigmaSquare</code>
参数:<code>postProbT</code>
for each probe, the posterior probablity to be a breakpoint
每个探针,后probablity是一个断点
参考文献----------References----------
Bayesian DNA copy number analysis. BMC Bioinformatics 10: 10. http://www.idsia.ch/~paola/mBPCR
参见----------See Also----------
estProfileWithMBPCR, plotEstProfile, writeEstProfile, estGlobParam
estProfileWithMBPCR,plotEstProfile,writeEstProfile,estGlobParam
举例----------Examples----------
##import the 250K NSP data of chromosome 11 of cell line JEKO-1 [#进口250K单元株JEKO-1 11号染色体的新型干法数据]
data(jekoChr11Array250Knsp)
##first example [#第一个例子]
## we select a part of chromosome 11[我们选择了11号染色体的一部分#]
y <- jekoChr11Array250Knsp$log2ratio[6400:6900]
p <- jekoChr11Array250Knsp$PhysicalPosition[6400:6900]
##we estimate the profile using the global parameters estimated on the whole genome[#我们估计使用估计在整个基因组的全局参数配置文件]
##the profile is estimated with mBPCR and with the Bayesian Regression Curve[#配置文件的估计mBPCR和贝叶斯回归曲线]
results <- computeMBPCR(y, nu=-3.012772e-10, rhoSquare=0.0479, sigmaSquare=0.0699, regr="BRC")
plot(p, y)
points(p, results$estPC, type='l', col='red')
points(p, results$regrCurve,type='l', col='green')
###second example [第二个例子#]
### we select a part of chromosome 11[##我们选择了11号染色体的一部分]
#y <- jekoChr11Array250Knsp$log2ratio[10600:11600][Y < - jekoChr11Array250Knsp美元log2ratio [10600:11600]]
#p <- jekoChr11Array250Knsp$PhysicalPosition[10600:11600][P <分 - jekoChr11Array250Knsp PhysicalPosition [10600:11600]]
###we estimate the profile using the global parameters estimated on the whole genome[##我们使用的全基因组估计的全局参数估计的个人资料]
###the profile is estimated with mBPCR and with the Bayesian Regression Curve Ak[#个人资料估计与mBPCR与贝叶斯回归曲线AK]
#results <- computeMBPCR(y, nu=-3.012772e-10, rhoSquare=0.0479, sigmaSquare=0.0699, regr="BRCAk")[结果< - computeMBPCR(Y,NU = 3.012772e-10,rhoSquare,sigmaSquare = 0.0479 = 0.0699,regr =“BRCAk”)]
#plot(p,y)[图(P,Y)]
#points(p, results$estPC, type='l', col='red')[点(P,结果美元estPC,类型=L,COL =红)]
#points(p, results$regrCurve, type='l', col='green')[点(P,结果美元regrCurve,=绿色类型=L,彩色)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|