resamp.adj(LPE)
resamp.adj()所属R语言包:LPE
Resampling based fdr adjustment
重采样,基于FDR调整
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Adjusts the fdr based on rank invariant genes
排名不变的基因的基础上调整的FDR
用法----------Usage----------
resamp.adj(x,y, q=0.01, iterations=5, min.genes.int=10)
参数----------Arguments----------
参数:x
Replicated data from first experimental condition (as matrix or data-frame) </table>
从第一次的实验条件下(如矩阵或数据框)</ TABLE>复制数据
参数:y
Replicated data from second experimental condition (as matrix or data-frame) </table>
从第二次实验条件下(如矩阵或数据框)</ TABLE>复制数据
参数:q
q is the quantile width; q=0.01 corresponds to 100 quantiles </table>
q是位数的宽度; Q = 0.01对应100位数</ TABLE>
参数:iterations
Number of iterations to be performed to obtain critical z-statistics </table>
要执行的迭代次数获得关键Z-统计</ TABLE>
参数:min.genes.int
Determines the minimum number of genes in a subinterval for selecting the adaptive intervals.
确定选择的自适应间隔子区间的最小数量的基因。
Details
详情----------Details----------
Returns the z-statistics for the null distribution, obtained from resampling the rank invariant genes within each quantile. These z-statistic values are compared with z-statiscs from the original data, and fdr is calculated.
返回Z-统计,获得每个分量重采样内的排名不变的基因,空分布。这些Z-统计值比较Z-statiscs从原始数据,FDR计算。
作者(S)----------Author(s)----------
Nitin Jain<a href="mailto:nitin.jain@pfizer.com">nitin.jain@pfizer.com</a>
参考文献----------References----------
differentially expressed genes with a small number of replicated microarrays, Bioinformatics, 1945-1951.
举例----------Examples----------
# Loading the library and the data[载入库和数据]
library(LPE)
data(Ley)
dim(Ley)
# Gives 12488*7 [给12488 * 7]
# First column is ID.[第一列是ID。]
# Subsetting the data[子集的数据]
subset.Ley <- Ley[1:1000,]
subset.Ley[,2:7] <- preprocess(subset.Ley[,2:7],data.type="MAS5")
# Finding the baseline distribution of condition 1 and 2.[寻找条件1和2的基准分配。]
var.1 <- baseOlig.error(subset.Ley[,2:4], q=0.01)
var.2 <- baseOlig.error(subset.Ley[,5:7], q=0.01)
# Applying LPE[应用液相外延]
lpe.result <- lpe(subset.Ley[,2:4],subset.Ley[,5:7], var.1, var.2,
probe.set.name=subset.Ley[,1])
z.stats.null <- resamp.adj(subset.Ley[,2:4], subset.Ley[,5:7], q=0.01, iterations=2,min.genes.int=10 )
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|