mt.rawp2adjp.LPE(LPE)
mt.rawp2adjp.LPE()所属R语言包:LPE
Adjusted p-values for simple multiple testing procedures
调整后的P-值简单的多个测试程序
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function computes adjusted p-values for simple multiple testing procedures from a vector of raw (unadjusted) p-values. The procedures include the Bonferroni, Holm (1979), Hochberg (1988), and Sidak procedures for strong control of the family-wise Type I error rate (FWER), and the Benjamini & Hochberg (1995) and Benjamini & Yekutieli (2001) procedures for (strong) control of the false discovery rate (FDR).
此函数计算调整p多个测试程序简单,从原料(未经调整)p的值的向量值。该程序包括的邦弗朗尼,霍尔姆(1979),Hochberg(1988),和控制能力强的家庭明智的类型错误率(FWER),Benjamini的Hochberg(1995年)和Benjamini及Yekutieli(Sidak程序2001年)的程序(强)的错误发现率(FDR)的控制权。
用法----------Usage----------
mt.rawp2adjp.LPE(rawp, proc=c("Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD", "BH", "BY"))
参数----------Arguments----------
参数:rawp
A vector of raw (unadjusted) p-values for each hypothesis under consideration. These could be nominal p-values, for example, from t-tables, or permutation p-values as given in mt.maxT and mt.minP. If the mt.maxT or mt.minP functions are used, raw p-values should be given in the original data order, rawp[order(index)].
原料(未经调整)p假设所考虑的每个值向量。这可能是名义p值,例如,从T-表,或置换p值给出mt.maxT和mt.minP。如果mt.maxT或mt.minP使用功能,原料p值应在原始数据的顺序,rawp[order(index)]。
参数:proc
A vector of character strings containing the names of the multiple testing procedures for which adjusted p-values are to be computed. This vector should include any of the following: "Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD", "BH", "BY".
一个矢量字符的字符串包含多个测试程序调整p值计算的名称。这个向量应包括以下任何:"Bonferroni","Holm","Hochberg","SidakSS","SidakSD","BH","BY" 。
Details
详情----------Details----------
Adjusted p-values are computed for simple FWER and FDR controlling procedures based on a vector of raw (unadjusted) p-values.
调整p值计算的简单FWER和原料(未经调整)p的值向量的基础上,FDR控制程序。
Bonferroni Bonferroni single-step adjusted p-values
邦弗朗尼邦弗朗尼单步调整p值
Holm Holm (1979) step-down adjusted p-values for
霍尔姆霍尔姆(1979年)降压调整p-值
Hochberg Hochberg (1988) step-up adjusted p-values for strong control of the FWER (for raw (unadjusted) p-values
hochberg Hochberg(1988)升压调整p的FWER的控制能力强值(原始(未经调整)p的值
SidakSS Sidak single-step adjusted p-values for strong control of the FWER (for positive orthant dependent test
SidakSS Sidak单步p值调整控制能力强的FWER(积极orthant依赖测试
SidakSD Sidak step-down adjusted p-values for strong control of the FWER (for positive orthant dependent test
Sidak SidakSD降压调整p控制能力强的FWER值(积极orthant依赖测试
BH adjusted p-values for the Benjamini & Hochberg (1995) step-up FDR controlling procedure (independent and positive
波黑调整p的Benjamini Hochberg(1995)(独立和积极的一步了FDR的控制程序值
BY adjusted p-values for the Benjamini & Yekutieli (2001) step-up FDR controlling procedure (general dependency
表示调整后的p的Benjamini Yekutieli(2001)升压FDR控制程序(一般依赖值
值----------Value----------
A list with components
与组件列表
参数:adjp
A matrix of adjusted p-values, with rows corresponding to hypotheses and columns to multiple testing procedures. Hypotheses are sorted in increasing order of their raw (unadjusted) p-values.
一个调整p值的矩阵,行相应的假设和列多个测试程序。假设是在越来越多的原料(未经调整)p值的顺序排序。
参数:index
A vector of row indices, between 1 and length(rawp), where rows are sorted according to their raw (unadjusted) p-values. To obtain the adjusted p-values in the original data order, use adjp[order(index),].
一个行指数的向量,介于1和length(rawp),根据它们的原始(未经调整)p的值的行进行排序。要获得原始数据的顺序调整p值,使用adjp[order(index),]。
作者(S)----------Author(s)----------
Sandrine Dudoit, <a href="http://www.stat.berkeley.edu/~sandrine">http://www.stat.berkeley.edu/~sandrine</a>,<br>
Yongchao Ge, <a href="mailto:gyc@stat.berkeley.edu">gyc@stat.berkeley.edu</a>.
参考文献----------References----------
rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B. Vol. 57: 289-300.<br>
rate in multiple hypothesis testing under dependency. Annals of Statistics. Accepted.<br>
hypothesis testing in microarray experiments.<br>
resampling-based <code>p</code>-value adjustment in multiple testing. <br>
significance, Biometrika. Vol. 75: 800-802.<br>
procedure. Scand. J. Statist.. Vol. 6: 65-70.
参见----------See Also----------
lpe
lpe
举例----------Examples----------
# Loading the library and the data[载入库和数据]
library(LPE)
data(Ley)
dim(Ley)
# Gives 12488*7 [给12488 * 7]
# First column is ID.[第一列是ID。]
# Subsetting the data[子集的数据]
subset.Ley <- Ley[1:1000,]
subset.Ley[,2:7] <- preprocess(subset.Ley[,2:7],data.type="MAS5")
# Finding the baseline distribution of condition 1 and 2.[寻找条件1和2的基准分配。]
var.1 <- baseOlig.error(subset.Ley[,2:4], q=0.01)
var.2 <- baseOlig.error(subset.Ley[,5:7], q=0.01)
# Applying LPE[应用液相外延]
lpe.result <- lpe(subset.Ley[,2:4],subset.Ley[,5:7], var.1, var.2,
probe.set.name=subset.Ley[,1])
fdr.BH <- fdr.adjust(lpe.result, adjp="BH")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|