lasso.simultaneous(lol)
lasso.simultaneous()所属R语言包:lol
Simultaneous lasso
同时套索
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The function performs lasso with multiple random sample splits, selecting coefficients that are simultaneously non-zero in both subsets of samples.
该函数执行套索与多个随机抽样分裂,选择同时在两个子集的样本非零系数。
用法----------Usage----------
lasso.simultaneous(y, x=NULL, model='linear', nSubsampling=200, alpha=.5, lambda1=NULL, track=FALSE, ...)
参数----------Arguments----------
参数:y
A vector of gene expression of a probe, or a list object if x is NULL. In the latter case y should a list of two components y and x, y is a vector of expression and x is a matrix containing copy number variables
一个向量基因表达的探针,或一个列表对象,如果x是NULL。在后者情况下,y应列表两部分组成Y和X,Y是一个表达向量,并拷贝数变量,x是一个矩阵
参数:x
Either a matrix containing CN variables or NULL
无论是矩阵点数变量或NULL
参数:model
which model to use, one of "cox", "logistic", "linear", or "poisson". Default to 'linear'
模型使用,“考克斯”,“MF”,“线性”或“泊松”。默认为“线性”
参数:nSubsampling
The number of random permutations, both on sample spliting and on variable scaling, default to 200.
样品分划和可变缩放,默认为200,随机排列。
参数:alpha
weakness parameter: control the shrinkage of regulators. The lower alpha is, the bigger the vanishing effect on small coefficients.
弱点参数:控制监管收缩。较低的阿尔法是,小系数越大,消失的效果。
参数:lambda1
minimum lambda, default to NULL
最低的lambda,默认为NULL
参数:track
logical value, whether to track the progress
逻辑值,是否跟踪进度
参数:...
Other parameters to be passed to the penalized function
其他参数被传递到惩罚函数
Details
详情----------Details----------
In each run the function splits samples randomly to two equal sets, run lasso on both sets, then select those coefficients that are simultaneously non-zero across two sets. Finally the results across many runs are summarized as the frequency of selected predictors - the higher the frequency the more confidence that the corresponding predictors are significant.
在每个运行的功能分割样本随机相等的两集,运行两套套索,然后选择那些同时横跨两套非零系数。最后,在许多运行结果概括为选定的预测频率 - 频率越高,相应的预测是显着的信心更。
值----------Value----------
A list object of class 'lol', consisting of:
一类“LOL”组成,列表中的对象:
参数:beta
Coefficient vector
系数向量
参数:n
Number of actual subsampling, should be equal or smaller than nSubsampling in case of failing.
实际抽样的数量,应等于或大于失败的情况下nSubsampling小。
参数:mat
result matrix of the subsampling
抽样的结果矩阵
作者(S)----------Author(s)----------
Yinyin Yuan
参考文献----------References----------
<h3>See Also</h3> lasso
举例----------Examples----------
data(chin07)
data <- list(y=chin07$ge[1,], x=t(chin07$cn))
res <- lasso.simultaneous(data, nSubsampling=50)
res
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|