找回密码
 注册
查看: 621|回复: 0

R语言 limma包 normexp.fit()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 23:21:19 | 显示全部楼层 |阅读模式
normexp.fit(limma)
normexp.fit()所属R语言包:limma

                                        Fit Normal+Exp Convolution Model to Observed Intensities
                                         适合普通+ EXP卷积模型观察到的强度

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Fit the normal+exponential convolution model to a vector of observed intensities. The normal part represents the background and the exponential part represents the signal intensities. This function is called by backgroundCorrect and is not normally called directly by users.
指数正常+卷积模型适合观测到的强度矢量。正常的部分代表的背景和指数部分代表信号强度。 backgroundCorrect通常不会由用户直接调用这个函数被调用。


用法----------Usage----------


normexp.fit(x, method="saddle", n.pts=NULL, trace=FALSE)



参数----------Arguments----------

参数:x
numeric vector of (background corrected) intensities
(背景校正)强度的数值向量


参数:method
method used to estimate the three parameters. Choices for normexp.fit are "mle", "saddle", "rma" and "rma75".
方法来估计三个参数。为选择normexp.fit是"mle","saddle","rma"和"rma75"。


参数:n.pts
number of quantiles of x to use for the fit. If NULL then all values of x will be used.
x使用适合位数的号码。如果NULL然后x所有值将被使用。


参数:trace
logical, if TRUE, tracing information on the progress of the optimization is given.
逻辑,如果TRUE,优化进度的跟踪信息给出。


Details

详情----------Details----------

The Normal+Exp (normexp) convolution model is a mathematical model representing microarray intensity data for the purposes of background correction. It was proposed originally as part of the RMA algorithm for Affymetrix microarray data. For two-color microarry data, the normexp background correction method was introduced and compared with other methods by Ritchie et al (2007).
正常+ EXP(normexp)卷积模型是一个数学模型,代表芯片强度数据,背景校正的目的。有人提议最初是作为Affymetrix的基因芯片数据的RMA算法的一部分。两色芯片研究数据,normexp背景校正方法介绍和里奇等人(2007)其他的方法相比。

This function uses maximum likelihood estimation to fit the normexp model to background-corrected intensities. The model assumes that the observed intensities are the sum of background and signal components, the background being normal and the signal being exponential distributed.
此函数使用最大似然估计适合的normexp的背景校正强度模型。模型假设观测到的强度是背景和信号成分的总和,是正常的背景和指数分布的信号。

The likelihood may be computed exactly (method="mle") or approximated using a saddle-point approximation (method="saddle"). The saddle-point approximation was proposed by Ritchie et al (2007). Silver et al (2008) added some computational refinements to the saddle-point approximation, making it more reliable in practice, and developed the exact likelihood maximization algorithm. The "mle" method uses the best performing algorithm from Silver et al (2008), which calls the optimization function nlminb with analytic first and second derivatives. Derivatives are computed with respect to the normal-mean, the log-normal-variance and the log-exponential-mean.
可精确计算的可能性(method="mle")或近似使用的鞍点逼近(method="saddle")。里奇等人(2007)提出的鞍点逼近。银等人(2008年)增加了一些计算精炼的鞍点逼近,在实践中更加可靠,并制定确切的可能性最大化算法。 "mle"方法使用从银等人(2008年),它调用的优化功能表现最好的算法nlminb与分析第一和第二衍生物。衍生工具方面均正常,log正常方差和log指数平均计算。

Two ad-hoc estimators are also available which do not require iterative estimation. "rma" results in a call to the bg.parameters function of the affy package. This provides the kernel estimation method that is part of the RMA algorithm for Affymetrix data. "rma75" uses the similar but less biased RMA-75 method from McGee and Chen (2006).
两个广告的临时估计也可以不需要迭代估计。 "rma"结果在调用功能的affy包bg.parameters。这提供的核估计方法,该方法是Affymetrix数据的RMA算法的一部分。 "rma75"使用类似,但不偏颇的RMA-75麦吉和陈(2006)的方法。

If the length x is very large, it may be worth saving computation time by setting n.pts to a value less than the total number of probes, for example n.pts=2^14.
如果长度x是非常大的,它可能是值得节省计算时间设置n.pts值小于探针的总数,例如n.pts=2^14。


值----------Value----------

A list containing the components
包含组件列表


参数:par
numeric vector giving estimated values of the mean and log-standard-deviation of the background-normal part and the log-mean of the signal-exponential part.
数值向量均值的背景下,正常的一部分,平均指数信号部分的log记录标准偏差估计值。


参数:m2loglik
numeric scalar giving minus twice the maximized log-likelihood
数字标给予减去两倍的最大似然


参数:convergence
integer code indicating successful convergence or otherwise of the optimization.
说明优化成功收敛或另有整数代码。


作者(S)----------Author(s)----------


Gordon Smyth and Jeremy Silver



参考文献----------References----------

Parameter estimation for the exponential-normal convolution model for background correction of Affymetrix GeneChip data. Stat Appl Genet Mol Biol, 5(1), Article 24.
A comparison of background correction methods for two-colour microarrays. Bioinformatics http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btm412
Microarray background correction: maximum likelihood estimation for the normal-exponential convolution. Biostatistics 10, 352-363. http://biostatistics.oxfordjournals.org/cgi/content/abstract/kxn042

参见----------See Also----------

normexp.signal, normexp.fit.control. Also bg.parameters in the affy package.
normexp.signal,normexp.fit.control。也bg.parameters in the affy package.

An overview of background correction functions is given in 04.Background.
背景校正功能概述04.Background的。


举例----------Examples----------


x <- c(2,3,1,10,3,20,5,6)
out <- normexp.fit(x)
normexp.signal(out$par, x=x)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-4 22:08 , Processed in 0.028871 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表