kooperberg(limma)
kooperberg()所属R语言包:limma
Kooperberg Model-Based Background Correction for GenePix data
kooperberg GenePix数据模型为基础的背景校正
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function uses a Bayesian model to background correct GenePix microarray data.
这个函数使用一个背景正确GenePix芯片数据的贝叶斯模型。
用法----------Usage----------
kooperberg(RG, a=TRUE, layout=RG$printer, verbose=TRUE)
参数----------Arguments----------
参数:RG
an RGList of GenePix data, read in using read.maimages, with other.columns=c("F635 SD","B635 SD","F532 SD","B532 SD","B532 Mean","B635 Mean","F Pixels","B Pixels").
读GenePix数据RGList的,在使用read.maimages,other.columns=c("F635 SD","B635 SD","F532 SD","B532 SD","B532 Mean","B635 Mean","F Pixels","B Pixels")。
参数:a
logical. If TRUE, the 'a' parameters in the model (equation 3 and 4) are estimated for each slide. If FALSE the 'a' parameters are set to unity.
逻辑。如果TRUE,一模型中的参数(公式3和4)估计为每一张幻灯片。如果FALSE的a参数设置为团结。
参数:layout
list containing print layout with components ngrid.r, ngrid.c, nspot.r and nspot.c. Defaults to RG$printer.
与组件列表,其中包含打印布局ngrid.r,ngrid.c,nspot.r和nspot.c。 RG$printer默认。
参数:verbose
logical. If TRUE, progress is reported to standard output.
逻辑。如果TRUE,进步到标准输出报告。
Details
详情----------Details----------
This function is for use with GenePix data and is designed to cope with the problem of large numbers of negative intensities and hence missing values on the log-intensity scale. It avoids missing values in most cases and at the same time dampens down the variability of log-ratios for low intensity spots. See Kooperberg et al (2002) for more details.
此功能是使用GenePix数据和设计,以应付大量负强度的问题,因此遗漏值log强度规模。它避免了在大多数情况下,缺失值,并在同一时间下的变异数比率低强度点挫伤。详情请参阅Kooperberg等人(2002年)。
kooperberg uses the foreground and background intensities, standard deviations and number of pixels to compute empirical estimates of the model parameters as described in equation 2 of Kooperberg et al (2002).
kooperberg使用的前景和背景强度,标准偏差和像素数计算模型参数的经验估计,在方程Kooperberg等(2002)2描述。
值----------Value----------
An RGList containing the components
RGList包含组件
参数:R
matrix containing the background adjusted intensities for the red channel for each spot for each array
矩阵包含红色通道为每个阵列的每个点的背景下调整强度
参数:G
matrix containing the background adjusted intensities for the green channel for each spot for each array
矩阵的绿色通道,为每个点,每个阵列包含的背景调整强度
参数:printer
list containing print layout
列表包含打印布局
作者(S)----------Author(s)----------
Matthew Ritchie
参考文献----------References----------
Improved background correction for spotted DNA microarrays. Journal of Computational Biology 9, 55-66.
A comparison of background correction methods for two-colour microarrays. Bioinformatics 23, 2700-2707. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btm412
参见----------See Also----------
04.Background gives an overview of background correction functions defined in the LIMMA package.
04.Background给出了一个校正在LIMMA包定义背景功能概述。
举例----------Examples----------
# This is example code for reading and background correcting GenePix data[这是阅读和背景纠正GenePix数据的示例代码]
# given GenePix Results (gpr) files in the working directory (data not[鉴于GenePix结果(GPR)在工作目录中的文件(数据未]
# provided).[提供)。]
## Not run: [#无法运行:]
genepixFiles <- dir(pattern="*\\.gpr$") # get the names of the GenePix image analysis output files in the current directory[在当前目录得到的的GenePix图像分析输出文件的名称]
RG <- read.maimages(genepixFiles, source="genepix", other.columns=c("F635 SD","B635 SD","F532 SD","B532 SD","B532 Mean","B635 Mean","F Pixels","B Pixels"))
RGmodel <- kooperberg(RG)
MA <- normalizeWithinArrays(RGmodel)
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|