找回密码
 注册
查看: 607|回复: 0

R语言 limma包 convest()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 23:13:28 | 显示全部楼层 |阅读模式
convest(limma)
convest()所属R语言包:limma

                                        Estimate Proportion of True Null Hypotheses
                                         真正的零假设的估计比例

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Returns an estimate of the proportion of true null hypotheses using a convex decreasing density estimate on a vector of p-values.
返回一个真正的零假设,减少凸密度估计的p值向量的比例估计。


用法----------Usage----------


convest(p, niter = 100, doplot = FALSE, doreport = FALSE)



参数----------Arguments----------

参数:p
numeric vector of p-values, calculated using any test of your choice. Missing values are not allowed
数字矢量p值计算,使用任何您所选择的测试。遗漏值是不允许的


参数:niter
number of iterations to be used in fitting the convex, decreasing density for the p-values. Default is 100.
用于装修凸,降低密度为p-值的迭代数量。默认值为100。


参数:doplot
logical, should updated plots of fitted convex decreasing p-value density be produced at each iteration? Default is FALSE.
逻辑,应该更新装凸密度p值下降的图,在每次迭代产生?默认FALSE。


参数:doreport
logical, should the estimated proportion be printed at each iteration? Default is FALSE.
逻辑,应印在每个迭代估计的比例?默认FALSE。


Details

详情----------Details----------

The proportion of true null hypotheses is often denoted pi0.
真正的零假设的比例往往表示PI0。


值----------Value----------

Numeric value in the interval [0,1] representing he estimated proportion of true null hypotheses.
数值在区间[0,1]代表他真正的零假设,估计比例。


作者(S)----------Author(s)----------


Egil Ferkingstad and Mette Langaas



参考文献----------References----------

Estimating the proportion of true null hypotheses, with application to DNA microarray data. Journal of the Royal Statistical Society Series B, 67, 555-572. Preprint at http://www.math.ntnu.no/~mettela/

参见----------See Also----------

See 08.Tests for other functions for producing or interpretting p-values.
看到08.Tests生产或影视之p值等功能。


举例----------Examples----------


# First simulate data, use no.genes genes and no.ind individuals,[首先模拟数据,的使用no.genes基因和no.ind个人,]
# with given value of pi0. Draw from normal distribution with mean=0[与价值PI0。绘制正态分布均值为= 0]
# (true null) and mean=mean.diff (false null).[(真空)和平均= mean.diff(假空)。]

no.genes <- 1000
no.ind <- 20
pi0 <- 0.9
mean.diff <- 1
n1 <- round(pi0*no.ind*no.genes)
n2 <- round((1-pi0)*no.ind*no.genes)
x <- matrix(c(rnorm(n1,mean=0),rnorm(n2,mean=mean.diff)),ncol=no.ind,byrow=TRUE)

# calculate p-values using your favorite method, e.g.[使用您最喜爱的方法,如计算p-值]
pvals <- ebayes(lm.series(x))$p.value

# run the convex decreasing density estimator to estimate pi0[运行,的凸降低密度估计估计PI0]
convest(pvals,niter=100,doplot=interactive())

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-5 00:35 , Processed in 0.023656 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表