deregulation.scores(joda)
deregulation.scores()所属R语言包:joda
Calculating deregulation scores.
放松管制的分数计算。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Deregulation scores quantify the extent to which the regulatory
放松管制分数量化程度的监管
用法----------Usage----------
deregulation.scores(reg.scores1, reg.scores2,verbose)
参数----------Arguments----------
参数:reg.scores1
A matrix of regulation scores of the genes (rows) for the regulators (columns), compued with the regulation.scores function. Given for the first cell population.
监管机构(列)regulation.scores函数compued(行)的基因的调节分数矩阵。鉴于第一的单元群。
参数:reg.scores2
The same as reg.scores1 but given for the second cell population.
作为reg.scores1相同,但第二个单元群。
参数:verbose
When TRUE, the execution prints informative messages
为真时,执行打印提示信息
Details
详情----------Details----------
The deregulation scores are computed by subtracting reg.scores1 from reg.scores2.
放松管制的分数计算减去从reg.scores2 reg.scores1。
值----------Value----------
A matrix with columns for the regulators, rows for the genes, and entries giving the deregulation scores.
与监管,一排排的基因,并给予放松管制分数条目列的矩阵。
作者(S)----------Author(s)----------
Ewa Szczurek
参考文献----------References----------
参见----------See Also----------
differential.probs, regulation.scores
differential.probs,regulation.scores
举例----------Examples----------
data(damage)
# Step 1[第1步]
# Get the probabilities of differential expression[获取差异表达的概率]
# for the knockout of ATM in the healthy cells[在健康单元的ATM淘汰赛]
probs.healthy.ATM= differential.probs(data.healthy[,"ATM",FALSE], NULL)
# Get the probabilities of differential expression[获取差异表达的概率]
# for the knockout of ATM in the damaged cells[淘汰赛中受损单元的ATM]
probs.damage.ATM= differential.probs(data.damage[,"ATM",FALSE], NULL)
# Step 2 [第2步]
# Regulation scores for a dataset with only one regulator[规例“分数只有一个监管机构的数据集]
# equal the signed probabilities[等于签署概率的]
# Step 3 [第3步]
# Get the deregulation scores[得到了放松管制的分数]
deregulation.ATM= deregulation.scores(probs.healthy.ATM, probs.damage.ATM, TRUE)
## Not run: [#无法运行:]
# Step 1[第1步]
probs.healthy= differential.probs(data.healthy, beliefs.healthy)
probs.damage= differential.probs(data.damage, beliefs.damage)
# Step 2[第2步]
regulation.healthy= regulation.scores(probs.healthy, model.healthy)
regulation.damage= regulation.scores(probs.damage, model.damage)
# Step 3[第3步]
deregulation= deregulation.scores(regulation.healthy, regulation.damage, TRUE)
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|