imageplot.iterate.bma(iterativeBMA)
imageplot.iterate.bma()所属R语言包:iterativeBMA
An image plot visualization tool
图像图可视化工具
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Create a visualization of the models and variables selected by the
创建一个可视化的模型和变量选择
用法----------Usage----------
imageplot.iterate.bma (bicreg.out, color="default", ...)
参数----------Arguments----------
参数:bicreg.out
An object of type 'bicreg', 'bic.glm' or 'bic.surv'
一个类型bicreg,bic.glm或bic.surv的对象
参数:color
The color of the plot. The value "default" uses the current default R color scheme for image. The value "blackandwhite" produces a black and white image.
色彩的图。值“默认”使用图像当前默认ŕ的配色方案。值“blackandwhite”产生黑白图像。
参数:...
Other parameters to be passed to the image and axis functions.
其他参数被传递到图像和轴功能。
Details
详情----------Details----------
This function is a modification of the imageplot.bma function from the BMA package. The difference is that variables (genes) with probne0 equal to 0 are removed before plotting. The arguments of this function is identical
此功能是imageplot.bmaBMA包的功能的修改。不同的是,变量(基因)与probne0等于0之前绘制删除。这个函数的参数是相同的
值----------Value----------
An heatmap-style image, with the BMA selected variables on the vertical axis, and the BMA selected models on the horizontal axis. The variables (genes) are sorted in descreasing order of the posterior probability that the variable is not equal to 0 (probne0) from top to bottom. The models are sorted in descreasing order of the model posterior probability (postprob) from left to right.
一个热图式的形象,与BMA的变量,纵轴,横轴上的BMA的选择模型。变量(基因)在descreasing后验概率的顺序,变量不等于0(probne0)从上到下排序。排序模型在descreasing为了模型的后验概率(postprob)由左到右。
注意----------Note----------
The BMA and Biobase packages are required.
BMA和Biobase包需要。
参考文献----------References----------
Bayesian Model Averaging and Model Search Strategies (with discussion). In Bayesian Statistics 6. J.M. Bernardo, A.P. Dawid, J.O. Berger, and A.F.M. Smith eds. Oxford University Press, pages 157-185.
Bayesian Model Averaging: Development of an improved multi-class, gene selection and classification tool for microarray data. Bioinformatics 21: 2394-2402.
参见----------See Also----------
iterateBMAglm.train
iterateBMAglm.train
举例----------Examples----------
library (Biobase)
library (BMA)
library (iterativeBMA)
data(trainData)
data(trainClass)
## training phase: select relevant genes[训练阶段:选择相关的基因]
ret.bic.glm <- iterateBMAglm.train (train.expr.set=trainData, trainClass, p=100)
## produce an image plot to visualize the selected genes and models[#产生一个形象的图可视化选定的基因和模型]
imageplot.iterate.bma (ret.bic.glm)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|