bma.predict(iterativeBMA)
bma.predict()所属R语言包:iterativeBMA
Predicted Probabilities from Bayesian Model Averaging
贝叶斯模型平均预测概率
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function computes the predicted posterior probability that each test sample belongs to class 1. It assumes
此函数计算的预测后验概率,每个测试样本属于第1类。它假定
用法----------Usage----------
bma.predict (newdataArr, postprobArr, mleArr)
参数----------Arguments----------
参数:newdataArr
a vector consisting of the data from a test sample.
从测试样品中的数据向量组成。
参数:postprobArr
a vector consisting of the posterior probability of each BMA selected model.
每个劳社所选模型的后验概率向量组成。
参数:mleArr
matrix with one row per model and one column per variable giving the maximum likelihood estimate of each coefficient for each BMA selected model.
与一列每个模型和每一个变量列,使每个劳社所选模型的最大似然估计每个系数矩阵。
Details
详情----------Details----------
Let Y be the response variable (class labels for samples in our case). In Bayesian Model Averaging (BMA), the posterior probability of Y=1 given the training set is the weighted average of the posterior probability of Y=1 given the training set and model M multiplied by the posterior probability of model M
设Y为响应变量(类样品的标签,在我们的例子)。在贝叶斯模型平均(BMA),给定的训练集后验概率为Y = 1:Y = 1的后验概率加权平均后验概率模型M乘以训练集和模型M
值----------Value----------
A real number between zero and one, representing the predicted
一个0和1之间的实数,较预测
参考文献----------References----------
Bayesian model selection in social research (with Discussion). Sociological Methodology 1995 (Peter V. Marsden, ed.), pp. 111-196, Cambridge, Mass.: Blackwells.
Bayesian Model Averaging: Development of an improved multi-class, gene selection and classification tool for microarray data. Bioinformatics 21: 2394-2402.
参见----------See Also----------
brier.score, iterateBMAglm.train
brier.score,iterateBMAglm.train
举例----------Examples----------
library (Biobase)
library (BMA)
library (iterativeBMA)
data(trainData)
data(trainClass)
## training phase: select relevant genes[训练阶段:选择相关的基因]
ret.bic.glm <- iterateBMAglm.train (train.expr.set=trainData, trainClass, p=100)
## get the selected genes with probne0 > 0[#得到与probne0> 0选定的基因]
ret.gene.names <- ret.bic.glm$namesx[ret.bic.glm$probne0 > 0]
data (testData)
## get the subset of test data with the genes from the last iteration of bic.glm[#得到最后一次迭代从对bic.glm的基因测试数据的子集]
curr.test.dat <- t(exprs(testData)[ret.gene.names,])
## to compute the predicted probabilities for the test samples[#计算测试样本的预测概率]
y.pred.test <- apply (curr.test.dat, 1, bma.predict, postprobArr=ret.bic.glm$postprob, mleArr=ret.bic.glm$mle)
## compute the Brier Score if the class labels of the test samples are known[#计算分数,如果测试样本类的标签被称为马库斯 - 布莱尔]
data (testClass)
brier.score (y.pred.test, testClass)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|