IPPD-package(IPPD)
IPPD-package()所属R语言包:IPPD
Peak pattern deconvolution for Protein Mass Spectrometry by
蛋白质质谱峰模式卷积
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The package provides functionality to extract isotopic peak patterns from raw mass spectra. This is done by fitting a large set of template basis functions to the raw spectrum using nonnegative least squares (ls) or nonnegative least absolute deviation (lad). Ideally, the nonnegativity constraint in combination with nonnegativity of the template basis functions effects that templates not matching the data are assigned an extremely low weight such that one can easily identify isotopic patterns present and not present in the spectrum. In practice, the templates only approximate the peak patterns, where the quality the approximation crucially depends on how well the shapes of the templates fit the isotopic patterns contained in a spectrum. For this reason, the package offers the flexible function fitModelParameters which tries to estimate model parameters, e.g. the width of a Gaussian bump, in a way tailored to the peak shapes in the data. As second peak model in addition to the standard Gaussian, the package offers full support for the Exponential Modified Gaussian.<br> The function getPeaklist predicts the set of isotopic peak patterns present in the spectrum in a fully automatic, yet customizable way. The main benefits of our approach are that
该软件包提供的功能,提取从原材料质谱同位素峰模式。这是由装修模板的基础上功能的原始频谱,利用非负最小二乘(LS)的非负最小绝对偏差(LAD)的大集。理想的情况下,与非负模板的基础功能,模板不匹配的数据被分配一个极低体重等,人们可以轻松地识别存在,而不是目前在频谱同位素模式的影响,结合非负约束。在实践中,模板只是近似的峰值模式,质量逼近关键取决于如何以及模板的形状适合频谱中的同位素模式。出于这个原因,包提供了灵活的功能fitModelParameters试图估计模型参数,如高斯凹凸宽度的方式,针对在数据的峰形。至于第二个高峰除了标准的高斯模型,包指数修正高斯。参考的的功能getPeaklist预测的频谱在一个完全自动化,但自定义的方式中存在的同位素峰模式提供了全力支持。我们的方法的主要好处是:
Overlapping peak patterns can be resolved.
重叠峰的模式可以解决。
The complete spectrum can be processed as a whole or in large sections by exploiting the sparse nature of the problem.
完整的频谱利用问题的稀疏性质,可以作为一个整体或大面积处理。
The set of parameters in getPeaklist are easy to interpret and require only very basic knowledge of statistics.
集的参数getPeaklist的很容易解释,并要求只有非常基本的统计知识。
A theoretically well-founded post-processing procedure is used.
充分理由的理论上的后处理程序使用。
The result can be analyzed visually in a detailed way using the function visualize.
分析结果可以直观地在一份详细的使用功能visualize。
作者(S)----------Author(s)----------
Martin Slawski <a href="mailto:ms@cs.uni-sb.de">ms@cs.uni-sb.de</a>, <br>
Rene Hussong <a href="mailto:rene@bioinf.uni-sb.de">rene@bioinf.uni-sb.de</a>, <br>
Matthias Hein <a href="mailto:hein@cs.uni-sb.de">hein@cs.uni-sb.de</a>
Maintainer: Martin Slawski <a href="mailto:ms@cs.uni-sb.de">ms@cs.uni-sb.de</a>.
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|