readLearnTS(imageHTS)
readLearnTS()所属R语言包:imageHTS
Learn, classify and predict cell labels.
学习,分类和预测单元的标签。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
readLearnTS trains an SVM classifier using cell features and a training cell set. predictCellLabels predicts cell labels.
readLearnTS训练SVM分类器,利用单元的功能和培训单元集。 predictCellLabels预测单元的标签。
用法----------Usage----------
readLearnTS(x, featurePar, trainingSet, access='cache', cost, gamma)
predictCellLabels(x, uname, access='cache')
参数----------Arguments----------
参数:x
An imageHTS object.
一个imageHTS对象。
参数:uname
A character vector, containing the well names to segment. See getUnames for details.
一个特征向量,以及名称包含段。看到getUnames详情。
参数:featurePar
A character string, indicating the filename containing the feature parameters.
一个字符串,包含功能参数表示文件名。
参数:trainingSet
A character string, indicating the filename containing the training cell set. See Details.
一个字符串,表示文件名含有培养单元集。查看详细信息。
参数:access
A character string indicating how to access the data. Valid values are local, server and cache, the default. See fileHTS for details.
一个字符串,指示如何访问数据。有效的值是local,server和cache,默认。看到fileHTS详情。
参数:cost
An optional numeric vector containing the SVM costs to be explored during the cross-validation parameter grid-search. Default is c(0.1, 1, 10, 20).
一个可选的数字向量,探索过程中的交叉验证参数网格搜索的支持向量机的成本。默认c(0.1, 1, 10, 20)。
参数:gamma
An optional numeric vector containing the radial kernel gamma parameters to be explored during the cross-validation parameter grid-search. Default is c(0.0001, 0.001, 0.01, 0.1).
一个可选的数字矢量包含径向内核的伽玛参数进行探讨过程中的交叉验证参数网格搜索。默认c(0.0001, 0.001, 0.01, 0.1)。
Details
详情----------Details----------
readLearnTS trains an SVM classifier using cell features and a training cell set. Features enumerated in the remove.classification.features field of the feature parameters are not considered for classification. The training set, pointed by trainingSet, is a tab-separated file containing the rows uname, spot, id and label. Each row designates a cell. This file is constructed by using the output of the cellPicker module, see popCellPicker. After completion, readLearnTS writes the a RDA file \'data/classifier.rda\' in the local project directory. This file contains the list returned by readLearnTS.
readLearnTS训练SVM分类器,利用单元的功能和培训单元集。 remove.classification.features场的特征参数中列举的特点是不考虑进行分类。 trainingSet指出,训练集,是一个制表符分隔的文件,其中包含的行uname,spot,id和label。每一行指定一个单元。此文件使用的cellPicker模块的输出构造,看到popCellPicker。项目建成后,readLearnTS写了RDA的文件\“数据/ classifier.rda \”在当地的项目目录。这个文件包含readLearnTS返回的列表。
predictCellLabels uses the trained classifier located in the file \'data/classifier.rda\' and cell features to predict cell labels of wells indicated by uname. For each well, the function writes the file clabels, which contains the predicted cell labels.
predictCellLabels使用训练有素的分类,在该文件位于\数据/ classifier.rda \和单元功能预测井单元的标签uname表示。每口井,该函数写入文件clabels,其中包含的预测单元的标签。
If present, popCellPicker shows the predicted cell labels. Several iterations of readLearnTS, predictCellLabels and popCellPicker calls are useful to build an efficient cell classifier.
如果存在,popCellPicker显示预测的电池标签。反复几次readLearnTS,predictCellLabels和popCellPicker调用都是有用的,以建立一个有效的单元分类。
值----------Value----------
Returns an invisible list which contains: classifier, the trained classifier obtained by tune.svm and cft, the features that were used to train the classifier.
返回一个无形的名单,其中包含:classifier,获得由tune.svm和cft训练有素的分类,被用来训练分类的功能。
作者(S)----------Author(s)----------
Gregoire Pau, <a href="mailto:gregoire.pau@embl.de">gregoire.pau@embl.de</a>, 2010
参见----------See Also----------
popCellPicker
popCellPicker
举例----------Examples----------
## see vignette for details[#有关详细信息,见小插曲]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|