pairwiseGsea(HTSanalyzeR)
pairwiseGsea()所属R语言包:HTSanalyzeR
GSEA on a pair of phenotypes
GSEA对一对表型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function performs pairwise GSEA: it looks for gene sets that are specifically over-represented towards the two different ends of two ranked phenotype vectors, in a gene set collection.
这个函数执行成对GSEA:它看起来是专门针对两种不同的两端的两个排名表型向量,在基因组集合,所占比例过大的基因套。
用法----------Usage----------
pairwiseGsea(gl1, gl2, gsc, exponent=1, nPermutations=1000,
minGeneSetSize=15, pAdjustMethod="BH")
参数----------Arguments----------
参数:gl1
a named numeric or integer vector where names are gene identifiers of the same type as the ones in the gene set collection, and values are the measurements on phenotype one corresponding to those genes. This vector MUST be ordered (decreasing or increasing)
一个名为数字或整数向量的名字是同一类型的基因在基因组集合的标识符,值是对应的基因表型的测量。这个向量必须订购(减少或增加)
参数:gl2
a named numeric or integer vector where names are gene identifiers of the same type as the ones in the gene set collection, and values are the measurements on phenotype two corresponding to those genes. This vector MUST be ordered
一个名为数字或整数向量的名字是同一类型的基因在基因组集合的标识符,值是对应的基因表型的测量。这种向量必须订购
参数:gsc
a list of gene sets, each of which in the list is a character vector of gene identifiers.
一个基因集的列表,每个列表中的基因识别的特征向量。
参数:exponent
a single numeric or integer value (set as 1 by default) specifying the exponent of the GSEA method.
一个单一的数字或整数指定GSEA方法的指数值(默认设置为1)。
参数:nPermutations
a single numeric or integer value specifying the number of permutation tests for each gene set
一个单一的数字或整型值,指定为每个基因组的排列测试
参数:minGeneSetSize
a single numeric or integer value specifying the minimum size required for a gene set to be considered.
一个单一的数字或整型值,指定一个基因所需的最小尺寸设置要考虑的。
参数:pAdjustMethod
a single character value specifying the p-value adjustment method to be used (see 'p.adjust' for details)
一个单一的字符值,指定要使用(详见“p.adjust”P-值调整方法)
Details
详情----------Details----------
phenotypes one and two must be measured on the same genes, i.e. the two vectors gl1 and gl2 must have the same length and their names must match, but the two vectors must be ordered separately, i.e.one phenotype vector is ordered based on the values of that phenotype only
相同的基因表型之一,必须测量,GL1和GL2即两个向量必须具有相同的长度和他们的名字必须匹配,但两个向量必须单独订购,ieone型向量的价值观的基础上有序仅这型
值----------Value----------
a table with a row for each gene set, containing the p-values for the GSEA, and the observed scores for each of the phenotypes independently. The table is ordered by the p-value column.
一排每个基因组的一个表,其中包含的GSEA P-值,并为每一个独立的表型的观察分数。表是有序的p值的列。
作者(S)----------Author(s)----------
Camille Terfve, Xin Wang
参考文献----------References----------
Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. & Mesirov, J. P. (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545-15550.
参见----------See Also----------
pairwiseGseaPlot, pairwisePhenoMannWhit
pairwiseGseaPlot,pairwisePhenoMannWhit
举例----------Examples----------
gl1 <- runif(100, min=-5, max=5)
gl1 <- gl1[order(gl1, decreasing=TRUE)]
gl2 <- runif(100, min=-5, max=5)
gl2 <- gl2[order(gl2, decreasing=TRUE)]
names(gl1) <- as.character(sample(x=seq(from=1, to=100, by=1), size=100,
replace=FALSE))
names(gl2) <- names(gl1)
gs1 <- sample(names(gl1), size=20, replace=FALSE)
gs2 <- sample(names(gl1), size=20, replace=FALSE)
gsc <- list(subset1=gs1, subset2=gs2)
pwGSEAscore <- pairwiseGsea(gl1=gl1, gl2=gl2, gsc=gsc)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|