getTopGeneSets(HTSanalyzeR)
getTopGeneSets()所属R语言包:HTSanalyzeR
Select top significant gene sets from GSEA results
选择GSEA结果的顶部显着的基因集
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This is a generic function.
这是一个通用的功能。
When implemented as the S4 method of class GSCA, this function selects top significant gene sets from GSEA results for user-specified gene collections. If 'ntop' is given, then top 'ntop' significant gene sets in gene set collections 'gscs' will be selected and their names will be returned. If 'allSig=TRUE', then all significant (adjusted p-value < 'pValueCutoff' see help("analyze")) gene sets will be selected and their names will be returned.
当作为的S4类方法实现GSCA,此功能选择从用户指定的基因集合GSEA结果的顶部显着的基因集。如果NTOP“,然后顶ntop的”显着的基因设定在基因组集合“GSCS将被选中,他们的名字将被退回。如果allSig = TRUE“,则所有显着(调整p值<pValueCutoff见帮助(”分析“))基因组将被选中,他们的名字将被退回。
To use this function for objects of class GSCA:
使用此功能的类对象GSCA:
getTopGeneSets(object, resultName, gscs, ntop=NULL, allSig=FALSE)
getTopGeneSets(对象,resultName,GSCS,NTOP = NULL,allSig = FALSE)
用法----------Usage----------
getTopGeneSets(object, ...)
参数----------Arguments----------
参数:object
an object. When this function is implemented as the S4 method of class GSCA, this argument is an object of class GSCA.
一个对象。作为的S4类方法实现此功能时,GSCA,这种说法是一种类GSCA的对象。
参数:...
other arguments (see below for the arguments supported by the method of class GSCA)
其他参数(见下面的类GSCA方法支持的论据)
值----------Value----------
a list of character vectors, each of which contains the names of top significant gene sets for each gene set collection
的特征向量,其中每个都包含顶级显著基因的名称设置为每个基因组的集合
作者(S)----------Author(s)----------
Xin Wang <a href="mailto:xw264@cam.ac.uk">xw264@cam.ac.uk</a>
举例----------Examples----------
## Not run: [#无法运行:]
library(org.Dm.eg.db)
library(KEGG.db)
##load data for enrichment analyses[#加载富集分析数据。]
data("KcViab_Data4Enrich")
##select hits[#选择点击]
hits <- names(KcViab_Data4Enrich)[which(abs(KcViab_Data4Enrich) > 2)]
##set up a list of gene set collections[#建立一个基因组的集合列表]
PW_KEGG <- KeggGeneSets(species = "Dm")
gscList <- list(PW_KEGG = PW_KEGG)
##create an object of class 'GSCA'[#创建一个对象类“GSCA]
gsca <- new("GSCA", listOfGeneSetCollections=gscList, geneList =
KcViab_Data4Enrich, hits = hits)
##print summary of gsca[#打印的gsca摘要]
summarize(gsca)
##do preprocessing (KcViab_Data4Enrich has already been preprocessed)[#做预处理(KcViab_Data4Enrich已经被预处理)]
gsca <- preprocess(gsca, species="Dm", initialIDs = "Entrez.gene",
keepMultipleMappings = TRUE, duplicateRemoverMethod = "max",
orderAbsValue = FALSE)
##print summary of gsca again[#打印总结的gsca再次]
summarize(gsca)
##do hypergeometric tests and GSEA[#做超几何测试和GSEA]
gsca <- analyze(gsca, para = list(pValueCutoff = 0.05, pAdjustMethod
= "BH", nPermutations = 1000, minGeneSetSize = 100,exponent = 1))
##print summary of results[#打印结果摘要]
summarize(gsca, what="Result")
##print top significant gene sets in GO.BP[#打印顶端在GO.BP的显著基因集]
topPWKEGG<-getTopGeneSets(gsca, "GSEA.results", "PW_KEGG", allSig=TRUE)
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|