NonLinearNet(GRENITS)
NonLinearNet()所属R语言包:GRENITS
Dynamic Bayesian Network Inference Using Non-Linear Interactions
使用非线性相互作用的动态贝叶斯网络推理
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Run Bayesian inference of non-linear interaction network. Non linear interactions are modelled using Penalised Splines. The function generates MCMC chains that can later be analysed.
非线性相互作用网络运行的贝叶斯推断。使用Penalised样条非线性相互作用模型。函数生成的MCMC链,可以在以后进行分析。
用法----------Usage----------
NonLinearNet( resultsFolder, timeSeries, ParamVec = NULL,
chains = 2, user.seeds = NULL, Regulators = NULL,
fixMe = NULL)
参数----------Arguments----------
参数:resultsFolder
Name of output folder. The folder will be created and the output of the run will be placed there.
输出文件夹的名称。该文件夹将创建和运行的输出将被放置在那里。
参数:timeSeries
Data matrix containing gene expression time series. Where genes will be placed in rows and time points in columns. Gene names may be included as row names.
含有基因表达的时间序列数据矩阵。基因将被放置行和列的时间点。基因名称可能被列为行名称。
参数:ParamVec
A parameter vector created using "mcmc.defaultParams_nonLinear". If none is given, default parameters will be used. The vector contains parameters associated to the priors as well as MCMC run length. (See mcmc.defaultParams_nonLinear)
创建一个参数向量使用“mcmc.defaultParams_nonLinear”。如果没有给出,默认参数将被使用。矢量包含相关的先验以及MCMC稳态运行长度的参数。 (见mcmc.defaultParams_nonLinear)
参数:chains
Number of MCMC chains to run.
MCMC方法链运行的数量。
参数:user.seeds
An optional vector with seeds to use for MCMC chains.
一个可选的向量,与种子使用的MCMC链。
参数:Regulators
An optional vector with the indices of which genes are regulators. If provided, all non-regulator genes will not be allowed to regulate.
哪些基因是监管与指数的一个可选的向量。如果提供的话,将不会被允许所有非调节基因的调节。
参数:fixMe
An optional matrix of size genes x genes, where columns represent regulators and rows regulated genes. The matrix informs the model of network connections known to be present/absent. For each position use either 0 (no regulation, fix off), 1 (known regulatory interaction, fix on) or NaN (no information, do not fix).
可选的大小基因矩阵X基因,列代表监管和调控的基因行。矩阵通知已知出席/缺席的网络连接模式。每个位置使用的是0(没有监管,解决关闭),1(已知的监管互动,修复)或NaN(没有信息,不固定)。
值----------Value----------
For each chain run, a folder (chain1, chain2, ...) will be created and the output of the MCMC run will be placed there. The files will be Gamma_mcmc (the indicator variables of Gibbs variable selection), Lambda_mcmc (the precision of each regression), Mu_mcmc (the intercept of each regression), Rho_mcmc (the network connectivity parameter), Tau_mcmc (the "smoothness parameter"), all_f (posterior mean of all functions), all_f_sqr (posterior mean of the square of all functions) and Full_F_sqr (posterior mean of the square of the sum of all functions, for each regression). For the files all_f and all_f_sqr functions are placed in column-wise order. The file is filled by placing all interactions for each regression one after another.
对于每一个链的运行,一个文件夹(chain1 1,chain2,...)将创建和输出的MCMC运行将放在那里。该文件将被Gamma_mcmc(吉布斯变量选择的指标变量),Lambda_mcmc(每个回归的精度),Mu_mcmc(每个回归截距),Rho_mcmc(网络连接参数),Tau_mcmc(“平滑参数”) :all_f(所有功能后的平均值),all_f_sqr(所有功能的平方后的平均值)和Full_F_sqr(后平均每个回归的所有功能的总和的平方)。的文件被放置在all_f和all_f_sqr功能列明智的顺序。该文件将陆续为每个回归一所有交互填充。
参考文献----------References----------
topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression Biostatistics 2011; doi: 10.1093/biostatistics/kxr009
参见----------See Also----------
mcmc.defaultParams_nonLinear, analyse.output.
mcmc.defaultParams_nonLinear, analyse.output。
举例----------Examples----------
# Synthetic data[综合数据]
data(Athaliana_ODE)
# Reduced data set to 3 genes 20 TP for faster run[更快的运行,减少数据设置为3个基因20的TP]
Athaliana_ODE.reduced <- Athaliana_ODE[c(1,3,5),1:20]
# Folder where raw runs will be kept and later analysed[原料运行文件夹将被保留,后来分析]
output.folder <- paste(tempdir(), "/ExampleNonLinearNet", sep = "")
# Run network inference and place raw results in output.folder[运行网络推理,并放置在原始结果output.folder]
NonLinearNet(output.folder , Athaliana_ODE.reduced)
# Analyse raw results, place analysis plots and files in output.folder[分析原料的结果,地方分析图和文件,在output.folder]
analyse.output(output.folder, Athaliana_ODE.reduced)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|