找回密码
 注册
查看: 635|回复: 0

R语言 GRENITS包 LinearNet()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 21:14:10 | 显示全部楼层 |阅读模式
LinearNet(GRENITS)
LinearNet()所属R语言包:GRENITS

                                        Dynamic Bayesian Network Inference Using Linear Interactions
                                         使用非线性相互作用的动态贝叶斯网络推理

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Run Bayesian inference of linear interaction network. The function generates MCMC chains that can later be  analysed.
线性相互作用网络运行的贝叶斯推断。函数生成的MCMC链,可以在以后进行分析。


用法----------Usage----------


LinearNet( resultsFolder,        timeSeries,   ParamVec = NULL,
              chains = 2, user.seeds = NULL, Regulators = NULL,
            fixMe = NULL)



参数----------Arguments----------

参数:resultsFolder
Name of output folder. The folder will be created and the output of the run  will be placed there.
输出文件夹的名称。该文件夹将创建和运行的输出将被放置在那里。


参数:timeSeries
Data matrix containing gene expression time series. Where genes will be placed in rows  and time points in columns. Gene names may be included as row names.
含有基因表达的时间序列数据矩阵。基因将被放置行和列的时间点。基因名称可能被列为行名称。


参数:ParamVec
A parameter vector created using "mcmc.defaultParams_Linear". If none is given,  default parameters will be used. The vector contains parameters associated to the priors as well as MCMC run length. (See mcmc.defaultParams_Linear)
创建一个参数向量使用“mcmc.defaultParams_Linear”。如果没有给出,默认参数将被使用。矢量包含相关的先验以及MCMC稳态运行长度的参数。 (见mcmc.defaultParams_Linear)


参数:chains
Number of MCMC chains to run.
MCMC方法链运行的数量。


参数:user.seeds
An optional vector with seeds to use for MCMC chains.
一个可选的向量,与种子使用的MCMC链。


参数:Regulators
An optional vector with the indices of which genes are regulators. If provided, all non-regulator genes will not be allowed to regulate.
哪些基因是监管与指数的一个可选的向量。如果提供的话,将不会被允许所有非调节基因的调节。


参数:fixMe
An optional matrix of size genes x genes, where columns represent regulators and  rows regulated genes. The matrix informs the model of network connections known to be present/absent. For each position use either 0 (no regulation, fix off), 1 (known regulatory interaction, fix on)  or NaN (no information, do not fix).
可选的大小基因矩阵X基因,列代表监管和调控的基因行。矩阵通知已知出席/缺席的网络连接模式。每个位置使用的是0(没有监管,解决关闭),1(已知的监管互动,修复)或NaN(没有信息,不固定)。


值----------Value----------

For each chain run, a folder (chain1, chain2, ...) will be created and the output of the MCMC run will be placed there. The files will be B_mcmc (the coeffcients of the linear regression), Gamma_mcmc (the  indicator variables of Gibbs variable selection), Lambda_mcmc (the precision of each regression), Mu_mcmc (the intercept of each regression) and Rho_mcmc (the network connectivity parameter).
对于每一个链的运行,一个文件夹(chain1 1,chain2,...)将创建和输出的MCMC运行将放在那里。该文件将被B_mcmc(线性回归系数的),Gamma_mcmc(吉布斯变量选择的指标变量),Lambda_mcmc(每个回归的精度),Mu_mcmc(每个回归截距)和Rho_mcmc(网络连接参数) 。


参考文献----------References----------

networks using time course data with repeated measurements.  Bioinformatics 2010; doi: 10.1093/bioinformatics/btq421
topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression Biostatistics 2011; doi: 10.1093/biostatistics/kxr009

参见----------See Also----------

mcmc.defaultParams_Linear, analyse.output.
mcmc.defaultParams_Linear, analyse.output。


举例----------Examples----------


  # Load A. thaliana circadian clock ODE generated data[生成的数据负载拟南芥生物钟的ODE]
  data(Athaliana_ODE)
  # Folder where raw runs will be kept and analysed[原料运行文件夹中,将保留和分析]
  output.folder <- paste(tempdir(), "/Example_LinearNet",sep="")
  # Run network inference, place raw results in output.folder[运行网络推断,原始结果将在output.folder]
  LinearNet(output.folder, Athaliana_ODE)
  # Analyse raw results, place analysis plots and files in output.folder[分析原料的结果,地方分析图和文件,在output.folder]
  analyse.output(output.folder)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-6 13:17 , Processed in 0.052495 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表