glpls1a.mlogit(gpls)
glpls1a.mlogit()所属R语言包:gpls
Fit MIRWPLS and MIRWPLSF model
适合MIRWPLS和MIRWPLSF模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fit multi-logit Iteratively ReWeighted Least Squares (MIRWPLS) with an option of Firth's bias reduction procedure (MIRWPLSF) for multi-group classification
适合多的罗吉特迭代加权最小二乘(MIRWPLS弗斯的偏见减少程序(MIRWPLSF)多组分类选项)
用法----------Usage----------
glpls1a.mlogit(x, y, K.prov = NULL, eps = 0.001, lmax = 100, b.ini = NULL, denom.eps = 1e-20, family = "binomial", link = "logit", br = T)
参数----------Arguments----------
参数:x
n by p design matrix (with intercept term)
由p的设计矩阵N(截距项)
参数:y
response vector with class lables 1 to C+1 for C+1 group classification, baseline class should be 1
响应向量类标贴1到C +1 C +1群分类,基线类应为1
参数:K.prov
number of PLS components
PLS的组件数
参数:eps
tolerance for convergence
收敛公差
参数:lmax
maximum number of iteration allowed
迭代允许的最大数量
参数:b.ini
initial value of regression coefficients
回归系数的初始值
参数:denom.eps
small quanitity to guarantee nonzero denominator in deciding convergence
小quanitity非零分母,以保证在决定收敛
参数:family
glm family, binomial (i.e. multinomial here) is the only relevant one here
GLM家庭,binomial(即多项式)是唯一相关的一
参数:link
link function, logit is the only one practically implemented now
链接功能,logit是唯一一个现在切实执行
参数:br
TRUE if Firth's bias reduction procedure is used
TRUE,如果用于弗斯的偏见减少程序
值----------Value----------
参数:coefficients
regression coefficient matrix
回归系数矩阵
参数:convergence
whether convergence is achieved
是否达到收敛
参数:niter
total number of iterations
迭代总数
参数:bias.reduction
whether Firth's procedure is used
弗斯的程序是否使用
作者(S)----------Author(s)----------
Beiying Ding, Robert Gentleman
参考文献----------References----------
generalized partial least squares.
estimation for generalized linear regression. Technometrics 38(4): 374-381.
参见----------See Also----------
glpls1a,glpls1a.mlogit.cv.error, glpls1a.train.test.error,
glpls1a,glpls1a.mlogit.cv.error,glpls1a.train.test.error
举例----------Examples----------
x <- matrix(rnorm(20),ncol=2)
y <- sample(1:3,10,TRUE)
## no bias reduction and 1 PLS component[#没有偏见减少1 PLS成分]
glpls1a.mlogit(cbind(rep(1,10),x),y,K.prov=1,br=FALSE)
## bias reduction[#偏见减少]
glpls1a.mlogit(cbind(rep(1,10),x),y,br=TRUE)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|