找回密码
 注册
查看: 434|回复: 0

R语言 flowViz包 gpolygon-methods()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 18:14:33 | 显示全部楼层 |阅读模式
gpolygon-methods(flowViz)
gpolygon-methods()所属R语言包:flowViz

                                         Drawing filter regions
                                         绘制滤波器区域

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

These methods extend the basic graphics polygon methods for drawing of filter regions. They allow for multiple dispatch, since not all filter types need to be evaluated
这些方法延长polygon区域绘图的基本图形filter方法。他们允许多个调度,因为不是所有的filter类型需要进行评估


Details

详情----------Details----------

When plotting flowFrames using the plot method provided by flowViz, the plotted parameters are recorded, which makes it possible to correctly overlay the outlines of filters assuming that they are defined for the respective parameters. Warnings and error will be cast for the cases where the parameters are non-distinct or ambigious.
当图flowFrameSplot方法提供flowViz,绘制参数都记录下来,这使我们能够正确地叠加filter的假设它们的轮廓定义为相应的参数。警告和错误,将被抛弃的情况下,其中的参数是不鲜明或ambigious。

The flow parameters plotted can be passed on to any of the methods through the optional channels argument, which always gets precedence over automatically detected parameters.
绘制的流动参数,可以通过任何方法通过可选channels的说法,总是优先自动检测参数。

The methods support all plotting parameters that are available for the base polygon functions.
该方法支持所有绘图参数basepolygon功能。


方法----------Methods----------




x = "filter", data = "missing"  General method for all objects inheriting from filter. This is used as the default when no more explicit method is found. It tries to find the plotted parameters from the internal flowViz.state environment. This only works if the flow data has been plotted using the plot methods provided by this flowViz
=“过滤器”,数据“丢失”的所有对象继承从filter通用方法。这是作为默认时,发现没有更明确的方法。它试图找到从内部flowViz.state环境绘制的参数。这只有当流量数据已绘制使用这plotflowViz方法




x = "filterResult", data = "ANY"  General method for all filterResult object. This basically extracts the filter from the filterResult and
X =“filterResult”数据=“ANY”的所有filterResult对象的通用方法。这基本上提取从filter“的filterResult




x = "filterResult", data = "flowFrame"  For some filter types we need the raw
=“filterResult”,数据=的“flowFrame”对于一些filter类型,我们需要的原材料




x = "curv1Filter", data = "ANY"  We either need a filterResult or the raw data as a flowFrame for
X =“curv1Filter”数据=“任何”我们需要一个filterResultflowFrame或原始数据




x = "curv1Filter", data = "flowFrame"  see above
X =“curv1Filter”,数据=的“flowFrame”见上面




x = "curv1Filter", data = "missing"  see above
=“curv1Filter”,数据“失踪”见上面




x = "curv1Filter", data = "multipleFilterResult"  see above
X =“curv1Filter”,数据=的“multipleFilterResult”见上面




x = "curv2Filter", data = "ANY"  We either need a filterResult or the raw data as a flowFrame for
X =“curv2Filter”数据=“任何”我们需要一个filterResultflowFrame或原始数据




x = "curv2Filter", data = "flowFrame"  see above
X =“curv2Filter”,数据=的“flowFrame”见上面




x = "curv2Filter", data = "multipleFilterResult"  see above
X =“curv2Filter”,数据=的“multipleFilterResult”见上面




x = "kmeansFilter", data = "ANY"  We don't know how to plot regions of a kmeansFilter, hence we
=“kmeansFilter”,数据=“ANY”,我们不知道如何绘制一个kmeansFilter区域,因此我们




x = "norm2Filter", data = "ANY"  We either need a filterResult or the raw data as a flowFrame for
X =“norm2Filter”数据=“任何”我们需要一个filterResultflowFrame或原始数据




x = "norm2Filter", data = "flowFrame"  see above
X =“norm2Filter”,数据=的“flowFrame”见上面




x = "norm2Filter", data = "logicalFilterResult"  see above
X =“norm2Filter”,数据=的“logicalFilterResult”见上面




x = "polygonGate", data = "character"  We can plot a
X =“polygonGate”,数据=“字符”,我们可以绘制




x = "polygonGate", data = "filterResult"  see above
X =“polygonGate”,数据=的“filterResult”见上面




x = "polygonGate", data = "flowFrame"  see above
X =“polygonGate”,数据=的“flowFrame”见上面




x = "quadGate", data = "character"  We can plot a
X =“quadGate”,数据=“字符”,我们可以绘制




x = "quadGate", data = "filterResult"  see above
X =“quadGate”,数据=的“filterResult”见上面




x = "quadGate", data = "flowFrame"  see above
X =“quadGate”,数据=的“flowFrame”见上面




x = "rectangleGate", data = "character"  We can plot a rectangleGate directly from the gate
X =“rectangleGate”数据=“字符”,我们可以绘制直接从大门rectangleGate




x = "rectangleGate", data = "filterResult"  see above
X =“rectangleGate”,数据=的“filterResult”见上面




x = "rectangleGate", data = "flowFrame"  see above
X =“rectangleGate”,数据=的“flowFrame”见上面




x = "ellipsoidGate", data = "character"  We can plot a ellipsoidGate directly from the gate
X =“ellipsoidGate”数据=“字符”,我们可以绘制直接从大门ellipsoidGate




x = "ellipsoidGate", data = "filterResult"  see above
X =“ellipsoidGate”,数据=的“filterResult”见上面




x = "ellipsoidGate", data = "flowFrame"  see above
X =“ellipsoidGate”,数据=的“flowFrame”见上面


作者(S)----------Author(s)----------


F. Hahne



参见----------See Also----------

filter, flowFrame, glines, gpoints
filter,flowFrame,glines,gpoints

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-8 15:05 , Processed in 0.027512 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表