plot-methods(flowFP)
plot-methods()所属R语言包:flowFP
Methods for visualizing flowFP objects
可视化flowFP对象的方法
译者:生物统计家园网 机器人LoveR
描述----------Description----------
These methods allow the user to plot flowFP objects with a number of options.
这些方法允许用户绘制多项选择flowFP对象。
方法----------Methods----------
plot (x, y, ...)
plot (x, y, ...)
x = "flowFPModel", y = "missing" Visualize a flowFPModel.<br> Optional Args: (parameters=NULL, alpha=1, border="gray",
x = "flowFPModel", y = "missing"flowFPModel参考可选ARGS可视化。的<code>(参数= NULL,α= 1,边界=“灰色”,
x = "flowFPModel", y = "flowFrame" Visualize a flowFPModel along with a flowFrame.<br> Optional Args: (parameters=NULL, alpha=1, border="gray",
x = "flowFPModel", y = "flowFrame"形象化flowFPModel一起flowFrame参考可选ARGS。的<code>(参数= NULL,α= 1,边界=“灰色”,
x = "flowFPModel", y = "flowSet" Visualize a flowFPModel along with a flowSet.<br> Optional Args: (parameters=NULL, alpha=1, border="gray",
x = "flowFPModel", y = "flowSet"形象化flowFPModel一起flowSet参考可选ARGS。的<code>(参数= NULL,α= 1,边界=“灰色”,
x = "flowFP", y = "missing" Visualize Fingerprints.<br> Optional Args: (type=c("tangle", "stack", "grid", "qc", "plate"), ...) <br>
x = "flowFP", y = "missing"可视化指纹参考可选ARGS:(type=c("tangle", "stack", "grid", "qc", "plate"), ...) 参考。
x = "flowFP", y = "flowFrame" Visualize a single fingerprint with a flowFrame. See Notes.
x = "flowFP", y = "flowFrame"可视同一个flowFrame指纹。见注释。
x = "flowFP", y = "flowSet" Visualize Fingerprints with a flowSet.<br>
x = "flowFP", y = "flowSet"可视化指纹与flowSet。参考
x = "flowFPPlex", y = "missing" Visualize Fingerprints in a flowFPPlex.<br>
x = "flowFPPlex", y = "missing"可视化指纹在1 flowFPPlex中。参考
参数----------Arguments----------
笔记----------Notes----------
In conjunction with showbins: generic plot args such as pch and cex can be
在与showbins结合:如pch和cex可以通用图ARGS
Optional Args: (transformation=c("raw", "normalized", "log2norm"), linecols=NULL, highlight=NULL, ylim=NULL,
可选ARGS为:<code>(转换= C(“原材料”,“标准化”,“log2norm”),linecols = NULL,则突出= NULL,则ylim =空,
Optional Args: (transformation=c("raw", "normalized", "log2norm"), linecols=NULL, useClasses=FALSE, vert_scale=3,
可选ARGS为:<code>(转换= C(“原始”,“标准化”,“log2norm”),linecols = NULL,useClasses = FALSE时,vert_scale = 3,
Optional Args: (vert_scale=3, main="Fingerprints", linecols="black", transformation=c("raw", "normalized", "log2norm"),
可选ARGS为:<code>(= 3 vert_scale,主要的“指纹”,linecols =“黑”,改造= C(“原始”,“标准化”,“log2norm”),
Optional Args: (main="Fingerprint Deviation Plot", transformation=c("log2norm", "raw", "normalized"), vert_scale=3, method=c("sd", "max"), red_limit=1.0,
可选ARGS为:<code>(主=“指纹偏差图”,改造= C(“log2norm”,“原始”,“归”),vert_scale = 3,方法= C(“SD”,“最大”),red_limit = 1.0,
Optional Args: (main="Fingerprint Deviation Plot", transformation=c("log2norm", "raw", "normalized"),
可选ARGS为:<code>(主=“指纹偏差图”,改造=(“log2norm”,“原始”,“标准化”),
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|