找回密码
 注册
查看: 767|回复: 0

R语言 fabia包 nmfsc()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 17:30:51 | 显示全部楼层 |阅读模式
nmfsc(fabia)
nmfsc()所属R语言包:fabia

                                        Non-negative Sparse Matrix Factorization
                                         非负稀疏矩阵分解

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

nmfsc: R implementation of  nmfsc.
nmfsc:R的nmfsc实施。


用法----------Usage----------



nmfsc(X,p=5,cyc=100,sL=0.6,sZ=0.6)





参数----------Arguments----------

参数:X
the data matrix.
数据矩阵。


参数:p
number of hidden factors = number of biclusters; default = 5.
隐性因素数=的biclusters;默认值= 5。


参数:cyc
maximal number of iterations; default = 100.
最大迭代次数,默认为100。


参数:sL
sparseness loadings; default = 0.6.
稀疏的负荷;默认值= 0.6。


参数:sZ
sparseness factors; default = 0.6.
稀疏的因素;默认值= 0.6。


Details

详情----------Details----------

Non-negative Matrix Factorization represents positive matrix X by positive matrices L and Z that are sparse.
非负矩阵分解正定矩阵X正定矩阵L和Z这是稀疏。

Objective for reconstruction is Euclidean distance and sparseness constraints.
重建的目的是欧几里德距离和稀疏约束。

Essentially the model is the sum of outer products of vectors:
模型本质上是向量外产品的总和:

where the number of summands  p is the number of biclusters. The matrix factorization is
加数p是的biclusters数量。矩阵分解

Here λ_i are from R^n, z_i from R^l, L from R^{n \times p}, Z from R^{p \times l}, and X from R^{n \times l}.
这里λ_iR^n,z_iR^l,LR^{n \times p},ZR^{p \times l}和XR^{n \times l}。

If the nonzero components of the sparse vectors are grouped together then the outer product results in a matrix with a nonzero block and zeros elsewhere.
如果稀疏向量的非零组件被组合在一起,然后在同一个非零块矩阵和零别处外产品的结果。

The model selection is performed by a constraint optimization according to  Hoyer, 2004. The Euclidean distance (the Frobenius norm) is minimized  subject to sparseness and non-negativity constraints.
模型的选择是根据2004年霍耶,约束优化。最小欧氏距离(Frobenius范)受稀疏和非负约束。

Model selection is done by gradient descent on the Euclidean objective and thereafter projection of single vectors of L and single vectors of Z to fulfill the sparseness and non-negativity constraints.
模式的选择是通过欧几里德的目标,其后L和单向量单一向量的投影梯度下降Z履行稀疏和非负约束。

The projection minimize the Euclidean distance to the original vector  given an l_1-norm and an l_2-norm and enforcing non-negativity.
投影减少到原来的向量给予l_1规范和l_2的规范和执行非负欧几里德距离。

The projection is a convex quadratic problem which is solved iteratively where at each iteration at least one component is set to zero. Instead of the  l_1-norm a sparseness measurement is used which relates the l_1-norm to the l_2-norm.
投影是一个凸二次其中至少一个组件,在每一次迭代设置为零,这是解决反复的问题。而不是l_1-规范使用1稀疏测量涉及l_1,规范l_2-范。

The code is implemented in R.
河中实现代码


值----------Value----------


参数:
object of the class Factorization. Containing LZ (estimated noise free data L  Z), L (loadings L), Z (factors Z), U (noise X-LZ), X (data X).  
对象类Factorization。含有LZ(估计无噪音的数据L  Z)L(负荷L)Z(因素Z)U (噪音X-LZ)X(数据X)。


作者(S)----------Author(s)----------


Sepp Hochreiter



参考文献----------References----------

‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Machine Learning Research 5:1457-1469, 2004.
‘Algorithms for non-negative matrix factorization’, In Advances in Neural Information Processing Systems 13, 556-562, 2001.

参见----------See Also----------

fabia, fabias, fabiap, fabi, fabiasp, mfsc, nmfdiv, nmfeu, nmfsc, plot, extractPlot, extractBic, plotBicluster, Factorization, projFuncPos, projFunc, estimateMode, makeFabiaData, makeFabiaDataBlocks, makeFabiaDataPos, makeFabiaDataBlocksPos, matrixImagePlot, summary, show, showSelected, fabiaDemo, fabiaVersion
fabia,fabias,fabiap,fabi,fabiasp,mfsc,nmfdiv,nmfeu,nmfsc,plot,extractPlot,extractBic,plotBicluster,Factorization,projFuncPos,projFunc,estimateMode ,makeFabiaData,makeFabiaDataBlocks,makeFabiaDataPos,makeFabiaDataBlocksPos,matrixImagePlot,summary,show,showSelected fabiaDemo,fabiaVersion


举例----------Examples----------



#---------------[---------------]
# TEST[试验]
#---------------[---------------]

dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
  of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
  sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
X <- abs(X)


resEx <- nmfsc(X,3,30,0.6,0.6)


## Not run: [#无法运行:]
#---------------[---------------]
# DEMO[演示]
#---------------[---------------]

dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5,
  of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
  sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
X <- abs(X)


resToy <- nmfsc(X,13,100,0.6,0.6)

extractPlot(resToy,ti="NMFSC",Y=Y)


## End(Not run)[#结束(不运行)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-9 07:45 , Processed in 0.024752 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表