找回密码
 注册
查看: 643|回复: 0

R语言 EDASeq包 withinLaneNormalization-methods()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 17:00:23 | 显示全部楼层 |阅读模式
withinLaneNormalization-methods(EDASeq)
withinLaneNormalization-methods()所属R语言包:EDASeq

                                          Methods for Function withinLaneNormalization in Package EDASeq
                                         为函数在包装EDASeq withinLaneNormalization方法

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Within-lane normalization for GC-content (or other lane-specific) bias.
内车道标准化GC含量(或其他特定车道)偏差。


用法----------Usage----------


withinLaneNormalization(x, y, which=c("loess","median","upper","full"), offset=FALSE, num.bins=10)



参数----------Arguments----------

参数:x
A numeric matrix representing the counts or a SeqExpressionSet object.
一个数字矩阵代表计数或SeqExpressionSet对象。


参数:y
A numeric vector representing the covariate to normalize for (if x is a matrix) or a character vector with the name of the covariate (if x is a SeqExpressionSet object). Usually it is the GC-content.
一个数值向量,代表协标准化(如果x是一个矩阵)或字符向量与协变量的名称(如果x是SeqExpressionSet对象)。它通常是在GC含量。


参数:which
Method used to normalized. See the details section and the reference below for details.
使用的方法来归。看到细节部分和参考下面的细节。


参数:offset
Should the normalized value be returned as an offset leaving the original counts unchanged?
应该归一化值返回一个偏移离开原来的数量不变?


参数:num.bins
The number of bins used to stratify the covariate for median, upper and full methods. Ignored if loess. See the reference for a discussion on the number of bins.
用于分层median,upper和full方法的协箱。如果loess忽略。上的垃圾桶数量的讨论,请参阅参考。


Details

详情----------Details----------

This method implements four normalizations described in Risso et al. (2011).
这种方法实现在Risso等介绍的四种归。 (2011年)。

The loess normalization transforms the data by regressing the counts on y and subtracting the loess fit from the counts to remove the dependence.
loess标准化转换的数据,通过回归y计数和减计数的黄土适合删除的依赖。

The median, upper and full normalizations are based on the stratification of the genes based on y. Once the genes are stratified in num.bins strata, the methods work as follows.
median,upper和full归基于分层基因y的基础上。一旦基因num.bins阶层的分层,方法如下。




median: scales the data to have the same median in each bin.
median:秤的数据有相同的中位数在每个垃圾桶。




upper: the same but with the upper quartile.
upper:相同的,但与上四分位数。




full: forces the distribution of each stratum to be the same using a non linear full quantile normalization, in the spirit of the one used in microarrays.
full:迫使各阶层的分布是相同的,在芯片中使用的精神,在使用非线性充分位数标准化。


方法----------Methods----------

It returns a matrix with the normalized counts if offset=FALSE or with the offset if offset=TRUE.
它返回矩阵如果offset=FALSE如果offset=TRUE或偏移归计数。

It returns a SeqExpressionSet with the normalized counts in the exprs slot if offset=FALSE or with the offset in the offset slot and the original counts in the exprs slot if offset=TRUE.
它返回一个SeqExpressionSet插槽归计数exprs如果offset=FALSE或offsetexprs插槽插槽和原始计数抵消如果offset=TRUE。


作者(S)----------Author(s)----------



Davide Risso.




参考文献----------References----------



举例----------Examples----------


library(yeastRNASeq)
data(geneLevelData)
data(yeastGC)

sub <- intersect(rownames(geneLevelData),names(yeastGC))

mat <- as.matrix(geneLevelData[sub,])

data <- newSeqExpressionSet(mat,phenoData=AnnotatedDataFrame(data.frame(conditions=factor(c("mut","mut","wt","wt")),row.names=colnames(geneLevelData))),featureData=AnnotatedDataFrame(data.frame(gc=yeastGC[sub])))

norm <- withinLaneNormalization(data,"gc",which="full",offset=FALSE)


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-10 23:30 , Processed in 0.019397 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表